京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【咱们的目标】系列算法讲解旨在用最简单易懂的故事情节帮助大家掌握晦涩无趣的机器学习,适合对数学很头疼的同学们,小板凳走起!
决策树模型是机器学习中最经典的算法之一啦,用途之广泛我就不多吹啦,其实很多机器学习算法都是以树模型为基础的,比如随机森林,Xgboost等一听起来就是很牛逼的算法(其实用起来也很牛逼)。
首先我们来看一下在上面的例子中我想根据人的年龄和性别(两个特征)对5个人(样本数据)进行决策,看看他们喜不喜欢玩电脑游戏。首先根据年龄(根节点)进行了一次分支决策,又对左节点根据性别进行了一次分支决策,这样所有的样本都落到了最终的叶子节点,可以把每一个叶子节点当成我们最终的决策结果(比如Y代表喜欢玩游戏,N代表不喜欢玩游戏)。这样我们就通过决策树完成了非常简单的分类任务!
再来看一下树的组成,主要结构有根节点(数据来了之后首先进行判断的特征),非叶子节点(中间的一系列过程),叶子节点(最终的结果),这些都是我们要建立的模块!
在决策中树中,我们刚才的喜欢玩电脑游戏的任务看起来很简单嘛,从上往下去走不就OK了吗!但是难点在于我们该如何构造这棵决策树(节点的选择以及切分),这个看起来就有些难了,因为当我们手里的数据特征比较多的时候就该犹豫了,到底拿谁当成是根节点呢?
这个就是我们最主要的问题啦,节点究竟该怎么选呢?不同的位置又有什么影响?怎么对特征进行切分呢?一些到这,我突然想起来一个段子,咱们来乐呵乐呵!
武林外传中这个段子够我笑一年的,其实咱们在推导机器学习算法的时候,也需要这么去想想,只有每一步都是有意义的我们才会选择去使用它。回归正题,我们选择的根节点其实意味着它的重要程度是最大的,相当于大当家了,因为它会对数据进行第一次切分,我们需要把最重要的用在最关键的位置,在决策树算法中,为了使得算法能够高效的进行,那么一开始就应当使用最有价值的特征。
接下来咱们就得唠唠如何选择大当家了,我们提出了一个概念叫做熵(不是我提出的。。。穿山甲说的),这里并不打算说的那么复杂,一句话解释一下,熵代表你经过一次分支之后分类的效果的好坏,如果一次分支决策后都属于一个类别(理想情况下,也是我们的目标)这时候我们认为效果很好嘛,那熵值就很低。如果分支决策后效果很差,什么类别都有,那么熵值就会很高,公式已经给出,log函数推荐大家自己画一下,然后看看概率[0,1]上的时候log函数值的大小(你会豁然开朗的)。
不确定性什么时候最大呢?模棱两可的的时候(就是你犹豫不决的时候)这个时候熵是最大的,因为什么类别出现的可能性都有。那么我们该怎么选大当家呢?(根节点的特征)当然是希望经过大当家决策后,熵值能够下降(意味着类别更纯净了,不那么混乱了)。在这里我们提出了一个词叫做信息增益(就当是我提出的吧。。。),信息增益表示经过一次决策后整个分类后的数据的熵值下降的大小,我们希望下降越多越好,理想情况下最纯净的熵是等于零的。
一个栗子:准备一天一个哥们打球的时候,包括了4个特征(都是环境因素)以及他最终有木有去打球的数据。
第一个问题:大当家该怎么选?也就是我们的根节点用哪个特征呢?
一共有4个特征,看起来好像用谁都可以呀,这个时候就该比试比试了,看看谁的能力强(使得熵值能够下降的最多)
在历史数据中,首先我们可以算出来当前的熵值,计算公式同上等于0.940,大当家的竞选我们逐一来分析,先看outlook这个特征,上图给出了基于天气的划分之后的熵值,计算方式依旧同上,比如outlook=sunny时,yes有2个,no有三个这个时候熵就直接将2/5和3/5带入公式就好啦。最终算出来了3种情况下的熵值。
再继续来看!outlook取不同情况的概率也是不一样的,这个是可以计算出来的相当于先验概率了,直接可以统计出来的,这个也需要考虑进来的。然后outlook竞选大当家的分值就出来啦(就是信息增益)等于0.247。同样的方法其余3个特征的信息增益照样都可以计算出来,谁的信息增益多我们就认为谁是我们的大当家,这样就完成了根节点的选择,接下来二当家以此类推就可以了!
我们刚才给大家讲解的是经典的ID3算法,基于熵值来构造决策树,现在已经有很多改进,比如信息增益率和CART树。简单来说一下信息增益率吧,我们再来考虑另外一个因素,如果把数据的样本编号当成一个特征,那么这个特征必然会使得所有数据完全分的开,因为一个样本只对应于一个ID,这样的熵值都是等于零的,所以为了解决这类特征引入了信息增益率,不光要考虑信息增益还要考虑特征自身的熵值。说白了就是用 信息增益/自身的熵值 来当做信息增益率。
我们刚才讨论的例子中使用的是离散型的数据,那连续值的数据咋办呢?通常我们都用二分法来逐一遍历来找到最合适的切分点!
下面再来唠一唠决策树中的剪枝任务,为啥要剪枝呢?树不是好好的吗,剪个毛线啊!这个就是机器学习中老生常谈的一个问题了,过拟合的风险,说白了就是如果一个树足够庞大,那么所有叶子节点可能只是一个数据点(无限制的切分下去),这样会使得我们的模型泛化能力很差,在测试集上没办法表现出应有的水平,所以我们要限制决策树的大小,不能让枝叶太庞大了。
最常用的剪枝策略有两种:
(1)预剪枝:边建立决策树边开始剪枝的操作
(2)后剪枝:建立完之后根据一定的策略来修建
这些就是我们的决策树算法啦,其实还蛮好的理解的,从上到下基于一种选择标准(熵,GINI系数)来找到最合适的当家的就可以啦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20