深入理解Python中range和xrange的区别
本次小编给大家带来的是深入理解range和xrange之间的区别。
两种用法介绍如下:
1.range([start], stop[, step])
返回等差数列。构建等差数列,起点是start,终点是stop,但不包含stop,公差是step。
start和step是可选项,没给出start时,从0开始;没给出step时,默认公差为1。
例如:
>>> range(10) #起点是0,终点是10,但是不包括10
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1,10) #起点是1,终点是10,但是不包括10
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1,10,2) #起点是1,终点是10,步长为2
[1, 3, 5, 7, 9]
>>> range(0,-10,-1) #起点是1,终点是10,步长为-1
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0,-10,1) #起点是0,终点是-10,终点为负数时,步长只能为负数,否则返回空
[]
>>> range(0) #起点是0,返回空列表
[]
>>> range(1,0) #起点大于终点,返回空列表
[]
2.xrange([start], stop[, step])
xrange与range类似,只是返回的是一个"xrange object"对象,而非数组list。
要生成很大的数字序列的时候,用xrange会比range性能优很多,因为不需要一上来就开辟一块很大的内存空间。
例如:
>>> lst = xrange(1,10)
>>> lst
xrange(1, 10)
>>> type(lst)
<type 'xrange'>
>>> list(lst)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
区别如下:
1.range和xrange都是在循环中使用,输出结果一样。
2.range返回的是一个list对象,而xrange返回的是一个生成器对象(xrange object)。
3.xrange则不会直接生成一个list,而是每次调用返回其中的一个值,内存空间使用极少,因而性能非常好。
补充点:
#以下三种形式的range,输出结果相同。
>>> lst = range(10)
>>> lst2 = list(range(10))
>>> lst3 = [x for x in range(10)]
>>> lst
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> lst2
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> lst3
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> lst == lst2 and lst2 == lst3
True
注意:Python 3.x已经去掉xrange,全部用range代替。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21