Stata软件对截断和删失数据处理方法介绍
截断和删失是完全不同的现象,都会导致我们的样本不完整。这些现象出现在医疗科学、工程、社会科学和其他研究领域。如果忽略截断和删失,当我们分析数据时,我们的人口参数估计就会不一致。
截断和删失会出现在处理样本的过程中,那我们就从定义左截断和左删失开始:
当低于阈值的个体在样本中不存在时,我们的数据就属于左截断。比如,我们想研究某些鱼的大小,以捕鱼网为样本,鱼小于鱼网,所以在我们的样本中是不存在的。
我们的数据从K开始左删失,如果每个个体值在样本中存在并低于K,但实际值未知。例如,我们有一个测量仪器,不能检测到一定水平以下的值时,就会发生这种情况。
我们主要讨论左截断和左删失,但是我们讨论的概念可以应用到所有的截断和删失中去:右截断、右删失和区间。
当执行截断或删失数据的估计时,我们需要使用一些工具来说明这些不完整的数据。对于截断线性回归,我们可以使用truncreg命令;对于删失线性回归,我们可以使用intreg和tobit命令。
这篇文章,我们将要分析截断数据和删失数据的特征,并讨论用truncreg命令和tobit命令来说明不完整的数据。
截断数据
案例:皇家海军陆战队
Fogel et al.(1978)发布了皇家海军陆战队人员的身高的数据集,此数据可以扩展到2个世纪。它可以用来确定不同时期,英国男性的平均身高。Trussell and Bloom (1979)指出样本被截断,由于新兵最低身高的限制。数据被截断了(而不是删失),因为身高低于最低限制的个人都没有出现在样本中。考虑到这一事实,他们拟合了1800年到1809年期间皇家海军陆战队身高的截断分布。
由于Trussell和Bloom提到的问题,我们使用了人工数据集。我们假设人口数据服从正态分布μ=65和σ=3.5,并且都是左截断到64.
我们使用一个直方图来总结我们的数据:
可以看到截断点,没有小于64的数据。
如果我们忽略截断,会发生什么呢?
如果我们忽略截断,将不完整的数据视为完整的,样本均值与总体均值就会不一致,因为截断点以下的所有观测值都是缺失的。在我们的实例中,真实的均值95%都在置信区间预测平均值外。
我们可以将样本直方图与忽略截断后得出的正态分布进行比较,并且把这些值看成是人口均值和标准差的估计。
使用truncreg考虑截断
我们可以使用truncreg来估计潜在非截断分布的参数。考虑左截断64,可以使用选项ll(64)。
现在估计的值接近我们的实际模拟值μ=65,σ=3.5。
让我们将截断密度重叠到数据直方图中去。
截断分布适合我们的样本,我们分析人口分布均值等于65,标准偏差等于3.5.
删失数据
现在我们看一下删失数据的案例,看看他们和截断数据之间的区别。
案例:家庭表面尼古丁的含量情况
Matt et al.在2004年进行了一项研究,对烟草烟雾污染吸烟者家庭的整个表面进行了评估。非常有趣的一项测量是家具表面的尼古丁含量情况。每个家庭中的擦拭样本来自每件家具。然而,尼古丁污染低于一定限度的,测量仪检测不到。
数据被删失了,而不是被截断了。当尼古丁污染低于检测极限值时,样本中仍然包含了尼古丁的检测值,这个检测值就等于最低极限值。被这项研究中的这个问题启发,我随意创建了一个人工数据集。尼古丁污染水平的日志被假定为正常。在这里,lognlevel包含尼古丁含量。用于模拟日志尼古丁含量的参数,删失数据是μ=ln(5),σ=2.5,左删失数据为0.1。我们开始绘制直方图。
直方图左侧有一个尖峰,因为在检测极限以下的值被记录为等于极限值。计算样本的原始均值和标准偏差,将不会为潜在的未经审查的高斯分布提供适当的估计。
均值和标准偏差分别估计为1.68和2.4,而实际参数为ln(5) =1.61 和2.5。
使用Tobit账户审核
我们估计均值和标准偏差分布,并使用ll选项的tobit来考虑左删失值(如果审核极限值随观测值而变化,那么可以用intreg来代替)。
潜在的未经审核的分布估计的均值为1.62,标准差2.49. 我们把未经审核的分布叠加到直方图中:
潜在的未经审核的分布匹配直方图的一部分,左边尾部补偿审查点的尖峰。
总结
在抽样数据中,删失和截断是不同的两种现象。截断高斯抽样中潜在的人口参数可以用truncreg来估计。删失高斯抽样中潜在的人口参数要用intreg或tobit来估计。
结语
我们已经讨论了删失和截断的概念,也举例说明了这两个概念的意思。与本次讨论有关的要点如下:
本次讨论是基于高斯模型之上的,但是主要的概念可以扩展到任意的分布中。以上的例子在没有协变量的情况下拟合回归模型,因此,我们可以更好地可视化删失和截断分布的形状。然而,这些概念很容易扩展到协变量的回归框架中,并且特定观测值的期望值是协变量函数。
我们已经讨论过使用truncreg和tobit来处理删失和截断数据。但是这些命令也可以应用到非删失和非截断数据中,只要这些数据是特定分布中的人口抽样。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29