Python工具中数据分析常用的包和模块
numpy: 数组、 向量、 矩阵、 数值运算等
scipy: 统计推断、 统计检验等
statsmodel: 统计建模、 模型验证等
scikit-learn: 数据清洗、 机器学习建模、 交叉验证等
matplotlib: 绘图
nltk: 自然语言处理
近几年Python的增长势头一直非常迅猛,写个web服务可以用Python、写个服务器脚本可以用Python、数据清洗和网络爬虫可以用Python、做机器学习数据挖掘可以用Python等等,Python 作为 AI 时代头牌语言的位置基本确立。
感谢上期学员的反馈,他们觉得3天学习时间不过瘾,于是Python数据挖掘课程变成4天了,跟着覃老师一起领悟数据挖掘算法精髓。强化的培训,应该让你可以学完后很自信,学以致用,快速上手解决工作中的问题。
2018年抓紧时间学习python技能,我们一起再出发,报名后获得预习视频和资料。
一、 课程安排
上课时间:2018年4月21—24日
上课地点:深圳市南山区科技园北区科技北一路17号摩比大厦
现场费用:3600/2800元(学生价格2800元 仅限全日制本科生及硕士研究生)
直播费用:2800元/人(同步上课时间 课程内容)
每天授课:上午9:00-12:00;下午13:30-16:30;16:30-17:00(答疑)
课程优惠:
1.现场班老学员9折优惠;
2.同一单位三人以上同时报名9折优惠;
以上优惠不叠加
二、 学员对象
1.数据分析和数据挖掘爱好者
2.算法部分有大学数学基础即可
三、授课老师
覃老师,早年毕业于中国人民大学统计学院,近 20 年来一直进行着数据分析的理论和实践,熟悉数据分析与建模,擅长使用Python、R语言、SAS和Spark解决大数据建模及算法优化难题,积累了大量实践案例,经验丰富;善于用逻辑贯穿数据分析过程,把深奥的思想和方法用通俗易懂的语言讲述清楚透彻,善于用数据分析计算机程序实现从数据到结论到预测的落地过程。2010 年至今培养了上万名(包括首批)使用R语言、SAS和Python等工具实现数据分析和挖掘的专业人士,帮助他们在数据挖掘领域提升工作技能或实现就业。
覃老师曾在某世界500强金融业公司工作期间曾带队负责开发国内首款基于数据分析建模、随机模拟和最优化精确计算的金融年金产品,该产品销售额持续领跑同业市场多年,获得金融产品创新大奖。
覃老师培训或完成过数据分析和挖掘项目的企业有中国人寿、陆金所、中国建设银行、汇丰银行、北京银行、渤海银行、宁波银行、吴江农商行、中国移动等。
四、课程大纲:
第一阶段: Python 基础精要,零基础也能学会
1. 语法初步
2. 列表、字符串和元组
3. 集合与字典
4. 条件和循环语句
5. 若干重要内置函数应用
6. 文件操作
7. 函数及其应用
8. 正则表达式
9. 数据库和 Python
10.排序算法、 动态规划算法、递归算法等算法
第二阶段:numpy、pandas等进行数据清洗和整理,充分统计分析数据
1. 整理数据(切片、产生随机数、复制、广播、排序等)
2. 数据索引和选择的各种方法
3. 数据的分组、分割、合并、变形
4. 缺失值和空值的数据处理
5. 时间序列数据处理、建模和预测(ARIMA)
6. 含中文数据的处理
7. 数据去重、去离群值
8. R语言和Python(pandas)数据整理和建模的比较
9. 描述统计和推论统计分析
1. 文本挖掘原理和案例(Logistic 回归模型对文本的分类)
2. 预测分析核心算法(图片的K-means聚类分析)
4. 概率统计(二维手写数字识别 KNN方法)
5. 数据可视化(推荐系统和精准营销 最近邻方法、协同过滤)
6. 金融建模分析(数据可视化的各种情形)
7. 客户画像和精准营销(新闻的文本分类 TF-IDF准则、旅游新闻个性化推荐)
8. 算法和模型的优化(手写识别)
9. 模型精度评估和提升(朴素贝叶斯决策)
10.特征选取的方法(酒的品质分类预测)
11.最佳K-means分类数(机器学习的格点搜索和参数寻优)
12.交叉验证(惩罚线性回归分类器)
13.不平衡数据处理(使用支持向量机识别和分类)
14.XGBoost 使用案例 (金融时间序列预测)
15.贝叶斯分析(机器集成学习算法)
16.逼近和最优化 (随机模拟)
17.自然语言概率图模型(用户流失预警)
18 马尔科夫&蒙特卡罗(量化投资实战)
4天课程内容有点烧脑,想学习的朋友报名从速,点击阅读原文,缴费后获得预习视频和资料。
五、在线咨询
张老师:
座机:010-68456523
QQ:2881989712
扫码添加微信
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21