Python工具中数据分析常用的包和模块
numpy: 数组、 向量、 矩阵、 数值运算等
scipy: 统计推断、 统计检验等
statsmodel: 统计建模、 模型验证等
scikit-learn: 数据清洗、 机器学习建模、 交叉验证等
matplotlib: 绘图
nltk: 自然语言处理
近几年Python的增长势头一直非常迅猛,写个web服务可以用Python、写个服务器脚本可以用Python、数据清洗和网络爬虫可以用Python、做机器学习数据挖掘可以用Python等等,Python 作为 AI 时代头牌语言的位置基本确立。
感谢上期学员的反馈,他们觉得3天学习时间不过瘾,于是Python数据挖掘课程变成4天了,跟着覃老师一起领悟数据挖掘算法精髓。强化的培训,应该让你可以学完后很自信,学以致用,快速上手解决工作中的问题。
2018年抓紧时间学习python技能,我们一起再出发,报名后获得预习视频和资料。
一、 课程安排
上课时间:2018年4月21—24日
上课地点:深圳市南山区科技园北区科技北一路17号摩比大厦
现场费用:3600/2800元(学生价格2800元 仅限全日制本科生及硕士研究生)
直播费用:2800元/人(同步上课时间 课程内容)
每天授课:上午9:00-12:00;下午13:30-16:30;16:30-17:00(答疑)
课程优惠:
1.现场班老学员9折优惠;
2.同一单位三人以上同时报名9折优惠;
以上优惠不叠加
二、 学员对象
1.数据分析和数据挖掘爱好者
2.算法部分有大学数学基础即可
三、授课老师
覃老师,早年毕业于中国人民大学统计学院,近 20 年来一直进行着数据分析的理论和实践,熟悉数据分析与建模,擅长使用Python、R语言、SAS和Spark解决大数据建模及算法优化难题,积累了大量实践案例,经验丰富;善于用逻辑贯穿数据分析过程,把深奥的思想和方法用通俗易懂的语言讲述清楚透彻,善于用数据分析计算机程序实现从数据到结论到预测的落地过程。2010 年至今培养了上万名(包括首批)使用R语言、SAS和Python等工具实现数据分析和挖掘的专业人士,帮助他们在数据挖掘领域提升工作技能或实现就业。
覃老师曾在某世界500强金融业公司工作期间曾带队负责开发国内首款基于数据分析建模、随机模拟和最优化精确计算的金融年金产品,该产品销售额持续领跑同业市场多年,获得金融产品创新大奖。
覃老师培训或完成过数据分析和挖掘项目的企业有中国人寿、陆金所、中国建设银行、汇丰银行、北京银行、渤海银行、宁波银行、吴江农商行、中国移动等。
四、课程大纲:
第一阶段: Python 基础精要,零基础也能学会
1. 语法初步
2. 列表、字符串和元组
3. 集合与字典
4. 条件和循环语句
5. 若干重要内置函数应用
6. 文件操作
7. 函数及其应用
8. 正则表达式
9. 数据库和 Python
10.排序算法、 动态规划算法、递归算法等算法
第二阶段:numpy、pandas等进行数据清洗和整理,充分统计分析数据
1. 整理数据(切片、产生随机数、复制、广播、排序等)
2. 数据索引和选择的各种方法
3. 数据的分组、分割、合并、变形
4. 缺失值和空值的数据处理
5. 时间序列数据处理、建模和预测(ARIMA)
6. 含中文数据的处理
7. 数据去重、去离群值
8. R语言和Python(pandas)数据整理和建模的比较
9. 描述统计和推论统计分析
1. 文本挖掘原理和案例(Logistic 回归模型对文本的分类)
2. 预测分析核心算法(图片的K-means聚类分析)
4. 概率统计(二维手写数字识别 KNN方法)
5. 数据可视化(推荐系统和精准营销 最近邻方法、协同过滤)
6. 金融建模分析(数据可视化的各种情形)
7. 客户画像和精准营销(新闻的文本分类 TF-IDF准则、旅游新闻个性化推荐)
8. 算法和模型的优化(手写识别)
9. 模型精度评估和提升(朴素贝叶斯决策)
10.特征选取的方法(酒的品质分类预测)
11.最佳K-means分类数(机器学习的格点搜索和参数寻优)
12.交叉验证(惩罚线性回归分类器)
13.不平衡数据处理(使用支持向量机识别和分类)
14.XGBoost 使用案例 (金融时间序列预测)
15.贝叶斯分析(机器集成学习算法)
16.逼近和最优化 (随机模拟)
17.自然语言概率图模型(用户流失预警)
18 马尔科夫&蒙特卡罗(量化投资实战)
4天课程内容有点烧脑,想学习的朋友报名从速,点击阅读原文,缴费后获得预习视频和资料。
五、在线咨询
张老师:
座机:010-68456523
QQ:2881989712
扫码添加微信
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30