迈出数据分析与机器学习的第一步
数据分析太火爆,怎奈机器学习太难懂!随着人工智能的浪潮卷卷袭来,机器学习已经越来越火爆啦。数据分析与机器学习岗位可谓供不应求,但是入门的门槛也是蛮高的,究竟了机器学习太难学还是咱们木有挑选到趁手的兵器呢?今天咱们的任务就是尝试用Python去开启一场数据分析和机器学习建模之旅,用最简单的方式带大家迈出机器学习的第一步!
机器学习:数据分析很好理解,就是挖掘出来我们需要的有价值的信息,那么机器学习又是什么呢?刚接触这个领域的同学可能有些迷茫,这个词看起来蛮高端的,我就来通俗的解释一下,机器学习也就是我们要让机器(咱们的电脑)在历史的数据中去学习到一些数据分布的规则然后应用到新的数据中,这样新的数据来了我们就可以做一系列任务啦,比如银行根据历史数据得出来什么样的人我会借给他多少钱,那么一个新来的同学来借钱,银行就会得出一个明确值,借给他多少钱!机器学习的应用已经涉及到我们生活中的各个角落啦,随着人工智能业的发展,相信机器学习的力量会使得我们生活的环境更上一层楼!
故事背景:今天要讲的故事是咱们家喻户晓的泰坦尼克号,那么咱们是要来回顾一下jack和rose的经典动作吗?这些只是咱们故事的开始,我们要做一件非常有意思的事情,去预测一下泰坦尼克号中,哪些成员能获救。
挑选兵器:任务已经明确下达,接下来的目的就是挑选几个合适的兵器去进行预测的工作啦,咱们的主线是使用Python,因为在数据分析与机器学习界Python已经成为一哥啦!首先介绍下咱们的兵器谱!
Numpy-科学计算库主要用来做矩阵运算,什么?你不知道哪里会用到矩阵,那么这样想吧,咱们的数据就是行(样本)和列(特征)组成的,那么数据本身不就是一个矩阵嘛。
Pandas-数据分析处理库很多小伙伴都在说用python处理数据很容易,那么容易在哪呢?其实有了pandas很复杂的操作我们也可以一行代码去解决掉!
Matplotlib-可视化库无论是分析还是建模,光靠好记性可不行,很有必要把结果和过程可视化的展示出来。
Scikit-Learn-机器学习库非常实用的机器学习算法库,这里面包含了基本你觉得你能用上所有机器学习算法啦。但还远不止如此,还有很多预处理和评估的模块等你来挖掘的!
数据简介:拿上这些趁手的兵器,我们赶紧干活吧,首先来看一下咱们的数据是长什么样子的!接下来我们就用这些武器来应对问题!
import pandas #ipython notebook
Pandas首先登场,我们用它来进行数据处理和分析是灰常方便的,首先读取了.csv文件,又显示了它的前5行数据。来简单介绍一下数据中每一列都是什么意思。
PassengerId:一个乘客的ID号,这对我们来说好像没啥大用呢,获不获救跟ID貌似没啥大关系,暂且不用它!
Survived:这个就很重要了,它就是咱们的标签(LABEL)标志着这个人到底是获救了,还是没获救。
Pclass:乘客的船舱等级,是贵族还是平民呢?有3个船舱的等级。
Name:乘客的姓名,老外的名字真长啊~
Sex:只有二种~
Age:各个年龄段的都有的
SibSp:与该船员一起登船的兄弟姐妹个数
Parch:老人和孩子个数
Ticket:船票~貌似咱们用不上这个编码
Fare:船票的价格,贵族票还是蛮贵的
Cabin:太多的缺失值了,直接给它pass掉不用了
Embarked:登船的码头,只有3个地点
titanic["Age"] = titanic["Age"].fillna(titanic["Age"].median())
print titanic.describe()
观察可以发现,对于Age这一列来说,只有714个值,而其他列都是891个值,这说明了什么呢?粗大事了,有缺失值,那怎么办呢?这可以用很多种方法啦,用均值,众数,中位数都可以进行填充嘛。在这里我们使用中位数来对缺失值进行了填充。这个不是个别现象,对于一份真实的数据来说,缺失值是灰常常见的现象!
print titanic["Sex"].unique()再观察一下数据,数据中很多列的属性值都是字符型的,这对我们有什么影响呢?咱们人类可以认识这些male和female但是计算机就不认识啦,它只认识数值,所以我们需要把字符值转换成数值类型的。
from sklearn import cross_validation
核武器登场啦,使用scikit-learn可以轻松建议一个机器学习模型,这里我们使用逻辑回归(经典的二分类)完成这个案例,首先还是先来介绍下逻辑回归是什么吧!
假设现在有两个特征,工资和年龄。我们要根据这两个指标来预测一下银行会借给这个人多少钱。那么我们就可以建立出来这样一个方程式!也就是说要找到最合适的一组参数使得我们最终预测的值和真实值越接近越好!但是我们现在要做的是一个分类任务呀!也就是说要得到一个类别值究竟是获救了还是没获救,那么还需要往下再走一步。
这个函数可厉害了,我们来观察一下,首先这个sigmoid函数的自变量取值范围是负无穷到正无穷的,值域是在0到1区间上,那么也就是说任何一个数值进入sigmoid函数之后都会得到一个(0,1)区间上的值,相当于是一个概率值了,那么我们就可以设置这样一个阈值。比如一个概率值>0.5我们把它当成1这个类别(获救啦),概率值<0.5我们把它当成0这个类别(很遗憾~)。在木有调节任何参数的情况下精度已经接近百分之八十啦!
模型评估:刚才咱们说了一下模型的精度,也就是指预测的结果和真实值之间有多少个是一致的,然后除以样本的总个数。精度可不是唯一的衡量标准,在机器学习的世界,我们有很多的标准,比如我们要进行一个检测的任务,目的是检测出所有病人中患癌症的是哪几个,这回就不能只用精度了而要考虑最终的目标-检测到癌症病人,这回可以使用召回率(RECALL)来完成这个任务,也就是检测到癌症病人个数除以癌症病人总个数,并不去计算正常病人我有木有检测到,因为这并不是我的目标!
特征选择:现在我们要好好想一想啦,我们最终的预测结果的准确程度和什么有关呢?一方面是我们选择的机器学习模型另一方面还有我们输入的特征数据呀,所以我们还得动动脑筋什么样的特征更适合预测呢。脑洞大开时间到啦,这回我们把一个成员的家庭数量也统计了出来,就是兄弟姐妹+老人孩子,还有名字的长度(玄学)以及称谓Mr,Miss,Master等。加入这些的目的就是让我们的特征更丰富一些,要想模型建立的好,特征的选择很关键,在起步阶段我们需要尽可能多的提供有价值的特征。
建立好模型还木有结束呀,对于一个分析任务来说,我们也需要知道这些特征对最后的结果产生了怎样的影响,例如是性别对结果影响比较大还是年龄呢?这回我们也可以通过预测的结果和真实值之间进行对比来分析一不同特征的重要程度!下图中可以分析得出不同特征的重要程度的差异还是蛮大的,我们还可以进行取舍以及进一步分析啦!
使用Matplotlib来画一个最简单的条形图,只需指定条形位置以及柱的高度即可,要进行可视化展示我们得长和它打交道啦!
plt.bar(range(len(predictors)), scores)
plt.xticks(range(len(predictors)), predictors, rotation='vertical')
plt.show()
这样咱们完成了一个灰常简单的预测任务,首先通过数据预处理把我们的数据做的纯净一些,然后把这些字符值转换成机器认识的数值,接下来让机器通过这批历史数据去学习一下什么样的参数能够最好的拟合咱们的数据,建立完模型后还需要不断的反思如何调节参数能够使得模型的效果更好以及给出一个合理的评估方法,最终输出来一个预测结果就完成这个机器学习的任务啦!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20