大数据项目失败的原因分析
几乎每个人的心目中,大数据就是企业IT部门的大大小小的结构化和非结构化数据,而且其量正在成倍的增长。但是,尽管大数据已然成为了一种主流的IT现象,多数的大数据项目仍然以失败而告终。
究其原因,就在于企业很难找到适当的方法进行大数据的收集、管理和理解,并最终从大数据信息中提取出有价值的东西。
征服大数据项目,并最终从中提取出您企业所需要的业务洞察力本身就是一项非常艰巨的任务。但当涉及到定义大数据项目的范畴,以及确保相关配套设施到位方面时,您企业的相关人员无法保持统一的步伐,那么,该项目注定是要失败的。
失败的原因分析
如下,是我所看到的大数据项目失败的主要原因:
缺乏一致性。在解决业务部门的相关问题方面,IT部门缺乏与业务部门的一致性。IT部门仅仅只是从技术的角度来看待问题。同样,缺乏企业利益相关者的真正的承诺也往往使得大数据项目很难成功。
缺乏数据访问权限。对数据的访问往往是受限制的,IT团队成员没有访问相关数据集的权限,以致他们无法找到能将使该项目成功的相关数据。
缺乏专业知识。鉴于许多在大数据领域的技术、方法和学科都是新的,导致企业的员工缺乏如何处理数据,完成业务的相关专业知识。
缺乏一致性
上述所有这些问题中,第一条,缺乏一致性。是您的企业必须首先解决的问题,而且也是最为重要的问题。问题的关键在于,您企业当前所探索和寻找的东西都是您不熟悉的领域,所以,要想获得大数据项目的成功,首先搞清楚您的业务部门到底是要解决什么问题是至关重要的。
虽然其是您企业大数据项目成功的最重要的因素,要想实现企业业务部门和IT部门之间的一致性也是相当具有挑战性的。不仅仅是因为大数据对于不同的人有着不同的意义,同时,还在于一系列外部因素可能会影响业务需求的变化,使得处理某些问题的优先级超出了IT部门所能保持的步伐。如果IT部门与业务部门在大数据项目所涉及的范畴方面无法达成一致,该项目就会涉及到太多的方向、太多的人,以至于会将重点从解决具体的业务问题变为对IT技术的管理,以便能够实现每个人的需求。
另外一个影响业务部门和IT部门之间的一致性的挑战来源于不愿意发生改变。很多时候,如果一个大数据项目建议采取相关的行动或变革,而业务部门的利益相关者不理解所涉及到的相关行动或变革,他们往往可能采取消极怠工的方法,首先默默的接受这一建议,但在之后将其贬为一个错误的进程,分析或数据集。对此,分析师团队则可能认为该业务部门已经同意并付诸相关行动了,只是他们所采取的行动所带来的结果只是产生了次优的业务成果。
缺乏数据访问权限
大数据项目失败的第二个原因——缺乏数据的访问权限可以追溯到一个基本的IT前提:筒仓。销售部门、营销部门、人力资源部门等都有数据仓库,每个部门的数据仓库都限制了相关数据的访问权限和保护措施。数据仓库存在的理由很好理解,但是如果IT部门所需要的数据仓库的某些相关数据不可用,那么,可以说在IT部门的员工试图解决某些问题前,就已然注定了他们无法解决这些问题了。
为了应对这一问题,大数据项目必须从一开始就具备相关数据的执行权。如果无法对所有业务相关数据进行访问,也就无法找出业务问题的关系和模式,也就无法解决业务部门所面临的问题了。所以,大数据项目的授权要来自企业的高层,如果企业高层发话说:“某个业务团队正在寻找解决某个相当重要的特定业务问题,IT部门就有足够的机会获得他们所需要的任何数据的访问权限了。”如果无法获得正确的数据信息,该项目无疑将长时间处于停滞状态。
缺乏专业知识
第三大缺陷——缺乏相关专业知识。这其实是源于企业缺乏合适的拥有正确的技能来执行大数据项目的人材。而由于大数据技术对于“主流”企业来说仍然是很新的,IT团队往往缺乏相关的专业知识来确定如何用大数据来达到分析的目的。
虽然招聘数据科学专家是解决这种专业知识的不足一种可能性的备选方案,但对于许多企业来说是不可行的。这一新的角色需要结合程序员的技能和调查研究科学家的思维,企业专门设置一个这样的职位的代价会非常高,同时其所需的相关技能设置也不常见,很难创建。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31