非平衡数据集的机器学习常用处理方法
定义:不平衡数据集:在分类等问题中,正负样本,或者各个类别的样本数目不一致。
例子:在人脸检测中,比如训练库有10万张人脸图像,其中9万没有包含人脸,1万包含人脸,这个数据集就是典型的不平衡数据集。
直观的影响就是,用这些不平衡的数据训练出来的模型,其预测结果偏向于训练数据中数据比较多的那一类,在人脸检测的例子中,就是检测器的检测结果大部分都偏向于没有检测到人脸图像。
另外一个不平衡数据集,就是信用卡欺诈交易,如果平均的抽取数据,则大部分的数据都是非欺诈交易,只有非常少的部分数据是欺诈交易
影响:不平衡的数据集上做训练和测试,其得到的准确率是虚高的,比如在不平衡数据中,正负样本的比例为9:1时,当它的精度为90%时,我们很有理由怀疑它将所有的类别都判断为数据多的那一类。
解决方法:8种
1.收集更多的数据: 好处:更够揭露数据类别的本质差别,增加样本少的数目以便后面的数据重采样。
2.尝试改变性能评价标准:
当数据不平衡时,准确度已经失去了它原有的意义,
可以参考的度量标准有:1> 混淆矩阵CM 2>精度 3>召回率 4>F1 分数(权衡精度和召回率);5.Kappa 6,ROC曲线
3.重采样数据:
1,拷贝一部分样本偏少的数据多分,已达到平衡(过采样);
2,删除一部分样本偏多的数据,以使得达到平衡(欠采样);
在实际中,过采样和欠采样都会使用的。
在测试中,如果样本总数比较多,可以用欠采样的数据进行测试,如果样本总数比较少,可以用过采样的数据进行测试;另外应该测试随机采样的数据和非随机采样的数据,同时,测试不同比例正负样本的数据。
4.生成合成数据:
最简单的是,随机采样样本数目比较少的属性,
另外一个比较出名的方法为:SMOTE:它是一种过采样的方法,它从样本比较少的类别中创建新的样本实例,一般,它从相近的几个样本中,随机的扰动一个特征,
5.使用不同的算法:
不要试图用一个方法解所有的问题,尝试一些其他不同的方法,比如决策树一般在不平衡数据集上表现的比较的好。
6.尝试惩罚模型:
意思就是添加新的惩罚项到cost函数中,以使得小样本的类别被判断错误的cost更大,迫使模型重视小样本的数据。
比如:带惩罚项的SVM
7.使用不同的视角:
不平衡的数据集,有专门的邻域和算法做这个,可以参考他们的做法和术语。
比如:异常检测。
8.尝试新的改进:
比如:1.把样本比较多的类别,分解为一些更多的小类别,比如:原始我们想区分数字0和其它数字这二分类问题,我们可以把其它数字在分为9类,变成0–9的分类问题;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31