Stata二维图的坐标轴选择
在Stata中,我们经常使用graph twoway命令绘制散点图、折线图、条形图等二维图。如果我们在绘图时,需要使用多个坐标轴,这时应该怎么办呢??→_→这时就需要用到坐标轴的选项(axis_choice_options)啦!
该选项的基本语法如下:
yaxis(# [#...]), 1≤ # ≤ 9
xaxis(# [#...]), 1≤ # ≤ 9
默认(缺省)情况下,Stata指定一个纵坐标轴和一个横坐标轴,即yaxis(1)和xaxis(1)。Stata最多允许在横纵两个方向各设置9个坐标轴。例如:yaxis(1 2),此时,纵轴的选择默认为先左后右,即第一个纵轴在图形左侧,第二个纵轴在图形右侧;xaxis(1 2),此时,横轴的选择默认为先下后上,即第一个横轴在图形下侧,第二个横轴在图形上侧;当设置的纵坐标轴(横坐标轴)不少于3个时,坐标轴会摆放在二维图的左侧(下侧),我们也可以通过命令来改变坐标轴的位置。
另外,为了使绘制的图形更美观,我们还可以通过绘图的其它选项来设置指定坐标轴的标题、标签、刻度和取值范围,更改图形或文字的位置、颜色、形状、大小等。更多关于坐标轴的详尽用法,请读者使用Stata中的help文件来进一步学习(help axis_choice_options)。
接下来,我们通过构造一个简单的数据集来介绍这一选项的使用方法。在绘图之前,我们先构造一个数据集,生成绘图所用的变量。
clear
set obs 55
set seed 123456789
gen time = _n
format time %td//日数据
gen week = week(time)//周标识
gen AR = ln(1+runiform())//超额收益率(日)
sort time
gen CAR = sum(AR)//累计超额收益率(日)
bysort week: egen meanAR = mean(AR)//平均超额收益率(周)
gen meanp_AR = meanAR/meanAR[_n-1] - 1//平均超额收益率变动率(周)
首先,我们使用单个y轴生成AR和CAR的折线图。当只有1个y轴时,选项yaxis(1)可以省略,x轴同理。
twoway (line CAR time, lwidth(medthick)) (line AR time, lwidth(medthick))//使用一个y轴
我们发现,当AR和CAR 使用同一y轴时,由于AR的取值范围远小于CAR,因此AR的变化在图中并不明显。
接下来,我们使用选项yaxis(n)设置双y轴,生成AR和CAR的折线图。其中,yaxis(1)指AR变量使用第一个y轴,yaxis(2)指CAR变量使用第二个y轴,第一个坐标轴选项yaxis(1)可以省略[l1] ,Stata最多允许在同一方向设置9个坐标轴。
twoway (line AR time,yaxis(1) lcolor(ebblue)) (line CAR time,yaxis(2) lcolor(cranberry))//双y轴
此时,我们能明显看出AR和CAR的变化趋势。AR是日超额收益率,变化幅度较大;CAR是累计超额收益率,呈上升趋势。
我们可以使用yaxis(n)和xaxis(n)选项设置2个y轴和2个x轴,生成AR的散点图、CAR的折线图和meanAR的条形图。此时,由于变量取值范围不同,AR和meanAR可以使用第一个y轴(0-0.8),CAR使用第二个y轴(0-25);由于时间单位的不同,AR和CAR可以使用第一个x轴(日),meanAR使用第二个x轴(周)。为了输出结果美观,我们使用对图形的颜色、宽度、大小等进行了调整,这些调整可以通过命令选项写出,也可以直接在生成的图形中修改。
twoway (bar meanAR week, xaxis(1) yaxis(1) color(ltblue) barw(0.6) xlabel(1(1)8)) (scatter AR time, c(l) ytitle(AR) xaxis(2) yaxis(1) mcolor(teal) msize(small) lcolor(teal)) (line CAR time, xaxis(2) yaxis(2) color(teal) lwidth(medthick))//双x轴双y轴
生成AR和CAR的折线图,meanp_AR的条形图。此时,由于变量取值范围各不相同,AR, CAR和meanp_AR需要分别使用一个y轴;由于时间单位的不同,meanp_AR使用第一个x轴(周),CAR和AR使用第二个x轴(日)
twoway (bar meanp_AR week, xaxis(1) yaxis(1) barw(0.5) color(ltblue) xlabel(1(1)8, axis(1))) (line AR time, xaxis(2) yaxis(2) lcolor(teal)) (line CAR time,xaxis(2) yaxis(3) lcolor(teal)) //双x轴三y轴
此时,我们发现,在Stata绘图中,当设置的纵坐标轴(横坐标轴)不少于3个时,纵坐标轴(横坐标轴)会堆积在图形左侧(下侧)。如果小伙伴们想要自行选择坐标轴出现的位置,可以使用选项yscale(alt)或xscale(alt),将指定的坐标轴移到另一侧。
例如,我们希望把条形图的纵轴移到右侧显示,使图形更加美观,我们可以使用yscale(alt)选项实现这一操作,命令如下:
twoway (bar meanp_AR week,xaxis(1) yaxis(1) yscale(alt) barw(0.5) color(ltblue) xlabel(1(1)8, axis(1))) (line AR time, xaxis(2) yaxis(2) lcolor(teal)) (line CAR time,xaxis(2) yaxis(3) lcolor(teal))
此时,我们使用yscale(alt)选项将条形图的纵轴移到右侧显示,并使用yline(0)选项为条形图增加了一条y=0的水平参考线,增加了图形的可读性。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10