
逻辑回归是最简单的机器学习模型,常常应用于各种简单的任务中。这里记录逻辑回归的背景以及学习方法,权当自己的学习记录总结。
逻辑回归:首先,它不是一个回归模型,而是一个分类模型,它是被用来做分类的。 之所以称之为回归,是因为它的学习的是模型模型的参数以最佳拟合已有的数据。(比如,根据已有的一些点,回归出它的直线参数的拟合过程,就称之为回归。)
学习方法:梯度上升法,随机梯度上升法。
模型特点:
1. 优点:训练快、易理解、易实现
2. 缺点:模型不够强大、拟合能力有限,欠拟合,对于复杂的任务效果不够好
在二分类的模型中,我们能最希望的函数是一个二值化函数,也就是
h(x) = 0 当 x > 阈值,h(x)=1 当 x < 阈值
函数下图所示:
然而,虽然这个函数是我们很想学习到的函数,但是由于它在阈值点处的跳跃性(不连续性),使得它变得不好处理(比如在该点处没有导数(梯度)的问题)。
幸好,自然是美好的,我们可以用其它的函数来近似这个函数,Sigmoid 函数就是一个很好的近似方法
其函数图形如下所示(值阈(0–>1))
函数表达式为:
相比于原始的二值化函数,sigmoid函数具有处处连续、可导的优点。
为了实现逻辑回归分类器,我们将每个特征都乘以一个回归系数wi,然后将结果相加得到一个值,并将这个值带入到sigmoid函数中,就会得到一个0–>1之间的数值,而大于0.5的值被分为1类,小于0.5的被分为0类。所以,逻辑回归也被称之为一个概率估计模型。
在已经确定了分类器模型的函数形式之后,问题就在于如何学习以获得最佳的回归系数?
主要是采用梯度上升及其变形的方法。
它的思想是:要找到某个函数的最大值,最好的方法就是沿着该函数的梯度方向进行寻找。(要有梯度就要求待计算的点有定义并且可导,所以二值化函数不能使用。)
权重更新:
其中alpha为步长,学习(训练)的停止条件一般为:迭代到达一定的次数,或者算法已经到达了一定的误差范围之内。
注意区别于梯度下降法:跟梯度上升法是相同的道理,加法变为减法。
随机梯度上升法:因为梯度上升法在每次更新回归系数的时候都需要遍历整个数据集合,当数据很多的时候,就不适用了,改进的方法为:一次只使用一个样本来更新回归系数,这种方法称之为随机梯度上升法。
只是它用来寻找最小值(一般是loss最小),而梯度上升法用来寻找最大值。
所以总的来说,逻辑回归的计算方法很简单,就分为两步:1,计算梯度,2,更新权值。
具体的权重更新方法为:
具体的代码如下(python):
def sigmoid(x):
'''
逻辑回归的判别函数
'''
return 1.0/(1.0+exp(-x))
def gradientAscent(datas,labels):
'''
输入参数datas:训练数据矩阵,每一行为一个数据
输入参数labels:标签数据,为一个值。
要求参数数据匹配
'''
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(dataX)
alpha = 0.001
#步长,也就是学习率
itera_num = 1000
#迭代次数
W = ones((n,1))
for i in range(itera_num):
H = sigmoid(dataX * W)
# H 是一个列向量,元素个数==m
error = dataY - H
W = W + alpha * X.transpose()*error
return W
def stochasticGradientAscent(datas,labels):
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(datas)
alpha = 0.01
W = ones(n)
for i in range(m):
h = sigmoid(sum(dataX[i]*W))
error = dataY[i] - h
W = W + alpha * error *dataX[i]
return W
总结: 逻辑回归的目的是为了寻找非线性函数Sigmoid的最佳拟合参数中的权值w,其w的值通过梯度上升法来学习到。随机梯度上升一次只处理少量的样本,节约了计算资源同时也使得算法可以在线学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08