逻辑回归是最简单的机器学习模型,常常应用于各种简单的任务中。这里记录逻辑回归的背景以及学习方法,权当自己的学习记录总结。
逻辑回归:首先,它不是一个回归模型,而是一个分类模型,它是被用来做分类的。 之所以称之为回归,是因为它的学习的是模型模型的参数以最佳拟合已有的数据。(比如,根据已有的一些点,回归出它的直线参数的拟合过程,就称之为回归。)
学习方法:梯度上升法,随机梯度上升法。
模型特点:
1. 优点:训练快、易理解、易实现
2. 缺点:模型不够强大、拟合能力有限,欠拟合,对于复杂的任务效果不够好
在二分类的模型中,我们能最希望的函数是一个二值化函数,也就是
h(x) = 0 当 x > 阈值,h(x)=1 当 x < 阈值
函数下图所示:
然而,虽然这个函数是我们很想学习到的函数,但是由于它在阈值点处的跳跃性(不连续性),使得它变得不好处理(比如在该点处没有导数(梯度)的问题)。
幸好,自然是美好的,我们可以用其它的函数来近似这个函数,Sigmoid 函数就是一个很好的近似方法
其函数图形如下所示(值阈(0–>1))
函数表达式为:
相比于原始的二值化函数,sigmoid函数具有处处连续、可导的优点。
为了实现逻辑回归分类器,我们将每个特征都乘以一个回归系数wi,然后将结果相加得到一个值,并将这个值带入到sigmoid函数中,就会得到一个0–>1之间的数值,而大于0.5的值被分为1类,小于0.5的被分为0类。所以,逻辑回归也被称之为一个概率估计模型。
在已经确定了分类器模型的函数形式之后,问题就在于如何学习以获得最佳的回归系数?
主要是采用梯度上升及其变形的方法。
它的思想是:要找到某个函数的最大值,最好的方法就是沿着该函数的梯度方向进行寻找。(要有梯度就要求待计算的点有定义并且可导,所以二值化函数不能使用。)
权重更新:
其中alpha为步长,学习(训练)的停止条件一般为:迭代到达一定的次数,或者算法已经到达了一定的误差范围之内。
注意区别于梯度下降法:跟梯度上升法是相同的道理,加法变为减法。
随机梯度上升法:因为梯度上升法在每次更新回归系数的时候都需要遍历整个数据集合,当数据很多的时候,就不适用了,改进的方法为:一次只使用一个样本来更新回归系数,这种方法称之为随机梯度上升法。
只是它用来寻找最小值(一般是loss最小),而梯度上升法用来寻找最大值。
所以总的来说,逻辑回归的计算方法很简单,就分为两步:1,计算梯度,2,更新权值。
具体的权重更新方法为:
具体的代码如下(python):
def sigmoid(x):
'''
逻辑回归的判别函数
'''
return 1.0/(1.0+exp(-x))
def gradientAscent(datas,labels):
'''
输入参数datas:训练数据矩阵,每一行为一个数据
输入参数labels:标签数据,为一个值。
要求参数数据匹配
'''
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(dataX)
alpha = 0.001
#步长,也就是学习率
itera_num = 1000
#迭代次数
W = ones((n,1))
for i in range(itera_num):
H = sigmoid(dataX * W)
# H 是一个列向量,元素个数==m
error = dataY - H
W = W + alpha * X.transpose()*error
return W
def stochasticGradientAscent(datas,labels):
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(datas)
alpha = 0.01
W = ones(n)
for i in range(m):
h = sigmoid(sum(dataX[i]*W))
error = dataY[i] - h
W = W + alpha * error *dataX[i]
return W
总结: 逻辑回归的目的是为了寻找非线性函数Sigmoid的最佳拟合参数中的权值w,其w的值通过梯度上升法来学习到。随机梯度上升一次只处理少量的样本,节约了计算资源同时也使得算法可以在线学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27