
逻辑回归是最简单的机器学习模型,常常应用于各种简单的任务中。这里记录逻辑回归的背景以及学习方法,权当自己的学习记录总结。
逻辑回归:首先,它不是一个回归模型,而是一个分类模型,它是被用来做分类的。 之所以称之为回归,是因为它的学习的是模型模型的参数以最佳拟合已有的数据。(比如,根据已有的一些点,回归出它的直线参数的拟合过程,就称之为回归。)
学习方法:梯度上升法,随机梯度上升法。
模型特点:
1. 优点:训练快、易理解、易实现
2. 缺点:模型不够强大、拟合能力有限,欠拟合,对于复杂的任务效果不够好
在二分类的模型中,我们能最希望的函数是一个二值化函数,也就是
h(x) = 0 当 x > 阈值,h(x)=1 当 x < 阈值
函数下图所示:
然而,虽然这个函数是我们很想学习到的函数,但是由于它在阈值点处的跳跃性(不连续性),使得它变得不好处理(比如在该点处没有导数(梯度)的问题)。
幸好,自然是美好的,我们可以用其它的函数来近似这个函数,Sigmoid 函数就是一个很好的近似方法
其函数图形如下所示(值阈(0–>1))
函数表达式为:
相比于原始的二值化函数,sigmoid函数具有处处连续、可导的优点。
为了实现逻辑回归分类器,我们将每个特征都乘以一个回归系数wi,然后将结果相加得到一个值,并将这个值带入到sigmoid函数中,就会得到一个0–>1之间的数值,而大于0.5的值被分为1类,小于0.5的被分为0类。所以,逻辑回归也被称之为一个概率估计模型。
在已经确定了分类器模型的函数形式之后,问题就在于如何学习以获得最佳的回归系数?
主要是采用梯度上升及其变形的方法。
它的思想是:要找到某个函数的最大值,最好的方法就是沿着该函数的梯度方向进行寻找。(要有梯度就要求待计算的点有定义并且可导,所以二值化函数不能使用。)
权重更新:
其中alpha为步长,学习(训练)的停止条件一般为:迭代到达一定的次数,或者算法已经到达了一定的误差范围之内。
注意区别于梯度下降法:跟梯度上升法是相同的道理,加法变为减法。
随机梯度上升法:因为梯度上升法在每次更新回归系数的时候都需要遍历整个数据集合,当数据很多的时候,就不适用了,改进的方法为:一次只使用一个样本来更新回归系数,这种方法称之为随机梯度上升法。
只是它用来寻找最小值(一般是loss最小),而梯度上升法用来寻找最大值。
所以总的来说,逻辑回归的计算方法很简单,就分为两步:1,计算梯度,2,更新权值。
具体的权重更新方法为:
具体的代码如下(python):
def sigmoid(x):
'''
逻辑回归的判别函数
'''
return 1.0/(1.0+exp(-x))
def gradientAscent(datas,labels):
'''
输入参数datas:训练数据矩阵,每一行为一个数据
输入参数labels:标签数据,为一个值。
要求参数数据匹配
'''
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(dataX)
alpha = 0.001
#步长,也就是学习率
itera_num = 1000
#迭代次数
W = ones((n,1))
for i in range(itera_num):
H = sigmoid(dataX * W)
# H 是一个列向量,元素个数==m
error = dataY - H
W = W + alpha * X.transpose()*error
return W
def stochasticGradientAscent(datas,labels):
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(datas)
alpha = 0.01
W = ones(n)
for i in range(m):
h = sigmoid(sum(dataX[i]*W))
error = dataY[i] - h
W = W + alpha * error *dataX[i]
return W
总结: 逻辑回归的目的是为了寻找非线性函数Sigmoid的最佳拟合参数中的权值w,其w的值通过梯度上升法来学习到。随机梯度上升一次只处理少量的样本,节约了计算资源同时也使得算法可以在线学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08