逻辑回归是最简单的机器学习模型,常常应用于各种简单的任务中。这里记录逻辑回归的背景以及学习方法,权当自己的学习记录总结。
逻辑回归:首先,它不是一个回归模型,而是一个分类模型,它是被用来做分类的。 之所以称之为回归,是因为它的学习的是模型模型的参数以最佳拟合已有的数据。(比如,根据已有的一些点,回归出它的直线参数的拟合过程,就称之为回归。)
学习方法:梯度上升法,随机梯度上升法。
模型特点:
1. 优点:训练快、易理解、易实现
2. 缺点:模型不够强大、拟合能力有限,欠拟合,对于复杂的任务效果不够好
在二分类的模型中,我们能最希望的函数是一个二值化函数,也就是
h(x) = 0 当 x > 阈值,h(x)=1 当 x < 阈值
函数下图所示:
然而,虽然这个函数是我们很想学习到的函数,但是由于它在阈值点处的跳跃性(不连续性),使得它变得不好处理(比如在该点处没有导数(梯度)的问题)。
幸好,自然是美好的,我们可以用其它的函数来近似这个函数,Sigmoid 函数就是一个很好的近似方法
其函数图形如下所示(值阈(0–>1))
函数表达式为:
相比于原始的二值化函数,sigmoid函数具有处处连续、可导的优点。
为了实现逻辑回归分类器,我们将每个特征都乘以一个回归系数wi,然后将结果相加得到一个值,并将这个值带入到sigmoid函数中,就会得到一个0–>1之间的数值,而大于0.5的值被分为1类,小于0.5的被分为0类。所以,逻辑回归也被称之为一个概率估计模型。
在已经确定了分类器模型的函数形式之后,问题就在于如何学习以获得最佳的回归系数?
主要是采用梯度上升及其变形的方法。
它的思想是:要找到某个函数的最大值,最好的方法就是沿着该函数的梯度方向进行寻找。(要有梯度就要求待计算的点有定义并且可导,所以二值化函数不能使用。)
权重更新:
其中alpha为步长,学习(训练)的停止条件一般为:迭代到达一定的次数,或者算法已经到达了一定的误差范围之内。
注意区别于梯度下降法:跟梯度上升法是相同的道理,加法变为减法。
随机梯度上升法:因为梯度上升法在每次更新回归系数的时候都需要遍历整个数据集合,当数据很多的时候,就不适用了,改进的方法为:一次只使用一个样本来更新回归系数,这种方法称之为随机梯度上升法。
只是它用来寻找最小值(一般是loss最小),而梯度上升法用来寻找最大值。
所以总的来说,逻辑回归的计算方法很简单,就分为两步:1,计算梯度,2,更新权值。
具体的权重更新方法为:
具体的代码如下(python):
def sigmoid(x):
'''
逻辑回归的判别函数
'''
return 1.0/(1.0+exp(-x))
def gradientAscent(datas,labels):
'''
输入参数datas:训练数据矩阵,每一行为一个数据
输入参数labels:标签数据,为一个值。
要求参数数据匹配
'''
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(dataX)
alpha = 0.001
#步长,也就是学习率
itera_num = 1000
#迭代次数
W = ones((n,1))
for i in range(itera_num):
H = sigmoid(dataX * W)
# H 是一个列向量,元素个数==m
error = dataY - H
W = W + alpha * X.transpose()*error
return W
def stochasticGradientAscent(datas,labels):
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(datas)
alpha = 0.01
W = ones(n)
for i in range(m):
h = sigmoid(sum(dataX[i]*W))
error = dataY[i] - h
W = W + alpha * error *dataX[i]
return W
总结: 逻辑回归的目的是为了寻找非线性函数Sigmoid的最佳拟合参数中的权值w,其w的值通过梯度上升法来学习到。随机梯度上升一次只处理少量的样本,节约了计算资源同时也使得算法可以在线学习。
数据分析咨询请扫描二维码
在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06