房屋价格数据采集与分析
随着互联网的发展,可供分析的信息越来越多,利用互联网上的信息来对生活中的问题做一些简单的研究分析,变得越来越便利了。本文就从数据采集、数据清洗、数据分析与可视化三部分来看看新的一年里房市的一些问题。
数据采集:
数据采集即从网页上采集我们需要的指定信息,一般使用爬虫实现。当前开源的爬虫非常多,处于简便及学习的目的,在此使用python的urllib2库模拟http访问网页,并BeautifulSoup解析网页获取指定的字段信息。本人获取的链家网上的新房和二手房数据,先来看看原始网页的结构:
首先是URL,不管是新房还是二手房,链家网的房产数据都是以列表的方式存在,比较容易获取,如下图:
其中包含的信息有楼盘名称、地址、价格等信息,回到原始网页,看看在html中,这些信息都在什么地方,如下图:
值得注意的是,原始的html为了节省传输带宽一般是经过压缩的,不太方便分析,可以借助一些html格式化工具进行处理再分析。知道这些信息后,就可以模拟http请求来拉取html网页并使用BeautifulSoup提取指定的字段了。
fw = open("./chengdu.txt","a+")
index = [i+1 for i in range(32)]
for pa in index:
try:
if pa==1:
url = "http://cd.fang.lianjia.com/loupan/"
else:
url = "http://cd.fang.lianjia.com/loupan/pg%d/"%(pa)
print "request:"+url
req = urllib2.Request( url )
req.add_header("User-Agent","Mozilla/5.0 (Windows NT 6.1;
WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101
Safari/537.36")
req.add_header("Accept","*/*")
req.add_header("Accept-Language","zh-CN,zh;q=0.8")
data = urllib2.urlopen( req )
res = data.read()
#print res
#res = res.replace(" ","")
#print res
#objects = demjson.decode(res)
soup = BeautifulSoup(res)
houseLst = soup.findAll(id='house-lst')
resp = soup.findAll('div', attrs = {'class': 'info-panel'})
for i in range(len(resp)):
name = resp[i].findAll('a', attrs = {'target': '_blank'})[0].text
privice = resp[i].findAll('span', attrs = {'class': 'num'})
privice = privice[0].text
region = resp[i].findAll('span', attrs = {'class': 'region'})
address = region[0].text.split('(')[0]
##解析获得经纬度
location,city,district = getGdLocation(name)
if not location:
location = getBdLocation(address)#自定义函数
if not location:
continue
formatStr = "%s,%s,%s,%s,%s\n"%(city,district,name,location,privice)
print formatStr
fw.write(formatStr)
except:
pass
fw.close()
数据清洗:
数据清洗,顾名思义就是将不合规的数据清理掉,留下可供我们能够正确分析的数据,至于哪些数据需要清理掉,则和我们最终的分析目标有一定的关系,可谓仁者见仁智者见智了。在这里,由于是基于地理位置做的一个统计分析,显然爬取的地理位置必须是准确的才行。但由于售房者填写的地址和楼盘名称可能有误,如何将这些有误的识别出来成为这里数据清洗成败的关键。我们清洗错误地理位置的逻辑是:使用高德地图的地理位置逆编码接口(地理位置逆编码即将地理名称解析成经纬度)获得楼盘名称和楼盘地址。对应的经纬度,计算二者对应的经纬度之间的距离,如果距离值超过一定的阀值,则认为地址标注有误或者地址标注不明确。经过清洗后,获取到的成都地区的在售楼盘及房屋数量总计在3000套的样子。
经过清洗后的数据格式为:
包括市、区、楼盘/房屋名称、经纬度、价格四个维度。
数据分析与可视化:
首先是新推楼盘挂牌价格与销售价格
市中心依然遵循了寸独存金的原则,销售价格远远高于郊县,一方面原因是位置地段、配套的独特性,一方面也是由于可供销售的土地面积、楼盘数量极为有限。
二手房销售价格和挂牌数量
二手房交易重要集中在市区及一些经济比较发达的郊县,不同区县的价格分化并不大,可能原因是老城区销售的二手房存在一部分老房子、同时二手房的价格卖家写的比较随意。
二手房数据的箱型图
这个就更为明显的印证了上面的结论,主城区的二手房存在一部分价格远低于市场均价的(即老房子),也有一部分价格昂贵的(新房、豪宅)出售,郊县的价格均方差则会低很多。
房屋销售热度的空间可视化
房屋销售热度以该区域的房屋销售数量和房屋销售价格综合来衡量,计算方式以该区域销售的房屋数量及销售价格进行加权。
新房销售热度
二手房销售热度
主城区没什么好说的了,人口密度大、买房售房的都多。在南边有一块远离市区的地方、新房和二手房的交易热度都很高,即成都市天府新区,目前配套和各项设施都不太完善,去这里花高价买房安家的老百姓想必不会太多,猜测是去年炒房热过年,这些人现在开始出售房屋了。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16