房屋价格数据采集与分析
随着互联网的发展,可供分析的信息越来越多,利用互联网上的信息来对生活中的问题做一些简单的研究分析,变得越来越便利了。本文就从数据采集、数据清洗、数据分析与可视化三部分来看看新的一年里房市的一些问题。
数据采集:
数据采集即从网页上采集我们需要的指定信息,一般使用爬虫实现。当前开源的爬虫非常多,处于简便及学习的目的,在此使用python的urllib2库模拟http访问网页,并BeautifulSoup解析网页获取指定的字段信息。本人获取的链家网上的新房和二手房数据,先来看看原始网页的结构:
首先是URL,不管是新房还是二手房,链家网的房产数据都是以列表的方式存在,比较容易获取,如下图:
其中包含的信息有楼盘名称、地址、价格等信息,回到原始网页,看看在html中,这些信息都在什么地方,如下图:
值得注意的是,原始的html为了节省传输带宽一般是经过压缩的,不太方便分析,可以借助一些html格式化工具进行处理再分析。知道这些信息后,就可以模拟http请求来拉取html网页并使用BeautifulSoup提取指定的字段了。
fw = open("./chengdu.txt","a+")
index = [i+1 for i in range(32)]
for pa in index:
try:
if pa==1:
url = "http://cd.fang.lianjia.com/loupan/"
else:
url = "http://cd.fang.lianjia.com/loupan/pg%d/"%(pa)
print "request:"+url
req = urllib2.Request( url )
req.add_header("User-Agent","Mozilla/5.0 (Windows NT 6.1;
WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101
Safari/537.36")
req.add_header("Accept","*/*")
req.add_header("Accept-Language","zh-CN,zh;q=0.8")
data = urllib2.urlopen( req )
res = data.read()
#print res
#res = res.replace(" ","")
#print res
#objects = demjson.decode(res)
soup = BeautifulSoup(res)
houseLst = soup.findAll(id='house-lst')
resp = soup.findAll('div', attrs = {'class': 'info-panel'})
for i in range(len(resp)):
name = resp[i].findAll('a', attrs = {'target': '_blank'})[0].text
privice = resp[i].findAll('span', attrs = {'class': 'num'})
privice = privice[0].text
region = resp[i].findAll('span', attrs = {'class': 'region'})
address = region[0].text.split('(')[0]
##解析获得经纬度
location,city,district = getGdLocation(name)
if not location:
location = getBdLocation(address)#自定义函数
if not location:
continue
formatStr = "%s,%s,%s,%s,%s\n"%(city,district,name,location,privice)
print formatStr
fw.write(formatStr)
except:
pass
fw.close()
数据清洗:
数据清洗,顾名思义就是将不合规的数据清理掉,留下可供我们能够正确分析的数据,至于哪些数据需要清理掉,则和我们最终的分析目标有一定的关系,可谓仁者见仁智者见智了。在这里,由于是基于地理位置做的一个统计分析,显然爬取的地理位置必须是准确的才行。但由于售房者填写的地址和楼盘名称可能有误,如何将这些有误的识别出来成为这里数据清洗成败的关键。我们清洗错误地理位置的逻辑是:使用高德地图的地理位置逆编码接口(地理位置逆编码即将地理名称解析成经纬度)获得楼盘名称和楼盘地址。对应的经纬度,计算二者对应的经纬度之间的距离,如果距离值超过一定的阀值,则认为地址标注有误或者地址标注不明确。经过清洗后,获取到的成都地区的在售楼盘及房屋数量总计在3000套的样子。
经过清洗后的数据格式为:
包括市、区、楼盘/房屋名称、经纬度、价格四个维度。
数据分析与可视化:
首先是新推楼盘挂牌价格与销售价格
市中心依然遵循了寸独存金的原则,销售价格远远高于郊县,一方面原因是位置地段、配套的独特性,一方面也是由于可供销售的土地面积、楼盘数量极为有限。
二手房销售价格和挂牌数量
二手房交易重要集中在市区及一些经济比较发达的郊县,不同区县的价格分化并不大,可能原因是老城区销售的二手房存在一部分老房子、同时二手房的价格卖家写的比较随意。
二手房数据的箱型图
这个就更为明显的印证了上面的结论,主城区的二手房存在一部分价格远低于市场均价的(即老房子),也有一部分价格昂贵的(新房、豪宅)出售,郊县的价格均方差则会低很多。
房屋销售热度的空间可视化
房屋销售热度以该区域的房屋销售数量和房屋销售价格综合来衡量,计算方式以该区域销售的房屋数量及销售价格进行加权。
新房销售热度
二手房销售热度
主城区没什么好说的了,人口密度大、买房售房的都多。在南边有一块远离市区的地方、新房和二手房的交易热度都很高,即成都市天府新区,目前配套和各项设施都不太完善,去这里花高价买房安家的老百姓想必不会太多,猜测是去年炒房热过年,这些人现在开始出售房屋了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31