热线电话:13121318867

登录
首页精彩阅读机器学习4种不同数据集的优劣对比
机器学习4种不同数据集的优劣对比
2018-03-31
收藏

机器学习4种不同数据集的优劣对比

数据源决定了机器学习算法,机器算法的选择好坏也决定了数据的分析质量等,因此,我们选择机器算法的时候,要首先弄懂各个机器学习数据集的优劣性,主要特点,方可着手处理,才能起到事半功倍的效果。下面随着大圣众包小编一起看看4种不同的机器学习数据集对比吧。

Iris


Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

Adult

该数据从美国1994年人口普查数据库抽取而来,可以用来预测居民收入是否超过50K$/year。该数据集类变量为年收入是否超过50k$,属性变量包含年龄,工种,学历,职业,人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。

Wine

这份数据集包含来自3种不同起源的葡萄酒的共178条记录。13个属性是葡萄酒的13种化学成分。通过化学分析可以来推断葡萄酒的起源。值得一提的是所有属性变量都是连续变量。

CarEvaluation

这是一个关于汽车测评的数据集,类别变量为汽车的测评,(unacc,ACC,good,vgood)分别代表(不可接受,可接受,好,非常好),而6个属性变量分别为「买入价」,「维护费」,「车门数」,「可容纳人数」,「后备箱大小」,「安全性」。值得一提的是6个属性变量全部是有序类别变量,比如「可容纳人数」值可为「2,4,more」,「安全性」值可为「low,med,high」。

小结

通过比较以上4个数据集的差异,简单地总结:当需要试验较大量的数据时,我们可以想到「Adult」;当想研究变量之间的相关性时,我们可以选择变量值只为整数或实数的「Iris」和「Wine」;当想研究logistic回归时,我们可以选择类变量值只有两种的「Adult」;当想研究类别变量转换时,我们可以选择属性变量为有序类别的「CarEvaluation」。大圣众包小编建议更多的尝试还需要对这些数据集了解更多才行。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询