不平衡数据分类算法介绍与比较
在数据挖掘中,经常会存在不平衡数据的分类问题,比如在异常监控预测中,由于异常就大多数情况下都不会出现,因此想要达到良好的识别效果普通的分类算法还远远不够,这里介绍几种处理不平衡数据的常用方法及对比。
符号表示
记多数类的样本集合为L,少数类的样本集合为S。
用r=|S|/|L|表示少数类与多数类的比例
基准
我们先用一个逻辑斯谛回归作为该实验的基准:
Weighted loss function
一个处理非平衡数据常用的方法就是设置损失函数的权重,使得少数类判别错误的损失大于多数类判别错误的损失。在python的scikit-learn中我们可以使用class_weight参数来设置权重。
欠采样方法(undersampling)
Random undersampling of majority class
一个最简单的方法就是从多数类中随机抽取样本从而减少多数类样本的数量,使数据达到平衡。
Edited Nearest Neighbor (ENN)
我们将那些L类的样本,如果他的大部分k近邻样本都跟他自己本身的类别不一样,我们就将他删除。
Repeated Edited Nearest Neighbor
这个方法就是不断的重复上述的删除过程,直到无法再删除为止。
Tomek Link Removal
如果有两个不同类别的样本,它们的最近邻都是对方,也就是A的最近邻是B,B的最近邻是A,那么A,B就是Tomek link。我们要做的就是讲所有Tomek link都删除掉。那么一个删除Tomek link的方法就是,将组成Tomek link的两个样本,如果有一个属于多数类样本,就将该多数类样本删除掉。
过采样方法(Oversampling)
我们可以通过欠抽样来减少多数类样本的数量从而达到平衡的目的,同样我们也可以通过,过抽样来增加少数类样本的数量,从而达到平衡的目的。
Random oversampling of minority class
一个最简单的方法,就是通过有放回的抽样,不断的从少数类的抽取样本,不过要注意的是这个方法很容易会导致过拟合。我们通过调整抽样的数量可以控制使得r=0.5
Synthetic Minority Oversampling Technique(SMOTE)
这是一个更为复杂的过抽样方法,他的方法步骤如下:
For each point p in S:
1. Compute its k nearest neighbors in S.
2. Randomly choose r ≤ k of the neighbors (with replacement).
3. Choose a random point along the lines joining p and
each of the r selected neighbors.
4. Add these synthetic points to the dataset with class
S.
For each point p in S:
1. 计算点p在S中的k个最近邻
2. 有放回地随机抽取R≤k个邻居
3. 对这R个点,每一个点与点p可以组成一条直线,然后在这条直线上随机取一个点,就产生了一个新的样本,一共可以这样做从而产生R个新的点。
4. 将这些新的点加入S中
Borderline-SMOTE1
这里介绍两种方法来提升SMOTE的方法。
For each point p in S:
1. Compute its m nearest neighbors in T. Call this set Mp and let m'= |Mp ∩ L|.
2. If m'= m, p is a noisy example. Ignore p and continue to the next point.
3. If 0 ≤ m'≤m/2, p is safe. Ignore p and continue to the next point.
4. If m/2 ≤ m'≤ m, add p to the set DANGER.
For each point d in DANGER, apply the SMOTE algorithm to generate synthetic examples.
For each point p in S:
1. 计算点p在训练集T上的m个最近邻。我们称这个集合为Mp然后设 m'= |Mp ∩ L| (表示点p的最近邻中属于L的数量).
2. If m'= m, p 是一个噪声,不做任何操作.
3. If 0 ≤m'≤m/2, 则说明p很安全,不做任何操作.
4. If m/2 ≤ m'≤ m, 那么点p就很危险了,我们需要在这个点附近生成一些新的少数类点,所以我们把它加入到DANGER中.
最后,对于每个在DANGER中的点d,使用SMOTE算法生成新的样本.
我们应用Borderline-SMOTE1的参数设置为k=5,为了使得r=0.5
Borderline-SMOTE2
这个与Borderline-SMOTE1很像,只有最后一步不一样。
在DANGER集中的点不仅从S集中求最近邻并生成新的少数类点,而且在L集中求最近邻,并生成新的少数类点,这会使得少数类的点更加接近其真实值。
FORpinDANGER:1.在S和L中分别得到k个最近邻样本Sk和Lk。2.在Sk中选出α比例的样本点和p作随机的线性插值产生新的少数类样本3.在Lk中选出1−α比例的样本点和p作随机的线性插值产生新的少数类样本。
为了达到r=0.5 实验取k=5
组合方法(Combination)
SMOTE + Tomek Link Removal
SMOTE + ENN
集成方法(Ensemble)
EasyEnsemble
一个最简单的集成方法就是不断从多数类中抽取样本,使得每个模型的多数类样本数量和少数类样本数量都相同,最后将这些模型集成起来。
算法伪代码如下:
1. For i = 1, ..., N:
(a) 随机从 L中抽取样本Li使得|Li| = |S|.
(b) 使用Li和S数据集,训练AdaBoost分类器Fi。
2. 将上述分类器联合起来
BalanceCascad
这个方法跟EasyEnsemble有点像,但不同的是,每次训练adaboost后都会扔掉已被正确分类的样本,经过不断地扔掉样本后,数据就会逐渐平衡。
该图来自:刘胥影, 吴建鑫, 周志华. 一种基于级联模型的类别不平衡数据分类方法[J]. 南京大学学报:自然科学版, 2006, 42(2):148-155
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16