为何大数据比不上好直觉
大数据是一笔大生意。感应器、GPS跟踪、数学建模和人工智能给企业带来了大规模的实时市场洞察力,为监控、定位、衡量员工和顾客开辟了史无前例的新方法。分析公司高德纳(Gartner)预计,采用大数据技术的公司将“在所有可测的财务指标上超过竞争者20%。”
大数据可能是“新的石油”,但我要提醒大家,不要把它当作一个新的信仰来崇拜。身处数据洪流之中,我们不仅失去了对商业的大局观,还失去了部分人性。如果我们认为更好的生活就等同于更好的算法,还能留下多少创新空间?
我不是有数据恐惧症,我担忧的是纯粹依靠数据。我不反对定量的测量方法,但我质疑它们作为商业表现、社会繁荣和生活意义等重要指标的共识性。
大数据有许多好处,不过我们还需要用“大直觉”来完善它。以下是六大理由:
大数据=老大哥?《纽约时报》(New York
Times)的史蒂夫?洛尔把大数据看作美国管理学家泰勒的“科学管理”的传承。泰勒主义的核心是业绩表现,而如今我们开始衡量快乐感和幸福感、消费偏好、社交关系、体育活动、态度、情绪、情感、行为和身体机能——换句话说,我们在评测自己的生活。
当然,某种程度上说,“量化自身”的应用程序能让人们更好地控制自己的决定。然而,如此一来,我们就在自我改善这一想法的驱使下,把曾经私密的领域开放给了商业世界。
大数据不具有社会性。人类是社会动物。研究显示,人与人之间的关系,尤其是友谊与婚姻,是快乐和自我实现的关键因素。我们的大脑有着关心的本能,我们的心脏和思想有着领会同类并与他们产生共鸣的惊人能力。我们能表现出同情,感受到情绪波动,察觉到非语言的细微暗示,容忍或拥抱,接受与拒绝,爱与痛,体会到我们所有的感受,做出不合理的举动,丧失自制力。这些人性的关键特质受到了里昂?维瑟提尔所称的“主观数字化”的威胁。
最近的社会基因研究显示,数字过载不仅降低了我们的生产力,还削弱了我们进化出的与他人交流的能力。
大数据造成小世界。道德感通过共鸣而增强。矛盾的是,在这个高度连接的时代,我们越来越需要面对一个挑战:与想法、价值观、信仰、信念和文化相异的人们交流。数字技术可以根据我们的偏好,为我们定制线上和线下的社交活动,我们越来越沉浸在自己的世界中——正如艾利?帕雷瑟所说的“过滤泡泡”。它通过智能算法,向我们提供熟悉的内容、文化和同伴,同时把这些东西直接砸入我们的舒适地带。我们不“赞”与我们不同的人和事物,陷入了社会和文化上狭隘的恶性循环。
大数据让我们更智能,而不是更有智慧。我们这个数据驱动的世界不仅变得更小,还变得更快。信息的实时传递促使我们不断地立刻做出回应。道格拉斯?洛西科夫打趣阿尔文?托夫勒1970年的着作《未来冲击》(Future
Shock)的书名,将我们现在的状态称为“现时冲击”(Present
Shock),他哀叹,“一切不是发生在当下的事情日益遭到漠视,而一切被认为是发生在当下的事情又让人应接不暇。”
数据可以迅速为我们提供信息,不过要快速做出意义深远的决定,直觉是更好的工具。普拉萨德?凯帕和纳威?拉裘在最近的一本书中力劝商界领袖进行“从智能到智慧”的转变。他们的意见很中肯。拥有智能的公司和领袖依靠持续的反馈成长起来。智能很快,智慧却很慢。拥有智慧的公司和领袖需要时间来实现转变。
大数据(过于)明显。“你只能管理你所测量到的”——真的吗?金融危机已经证明我们对于所测量的事物管理得很失败。失败的兼并、失败的产品发布、信誉危机、社交媒体的灾难,这一切都证明,我们需要更好地管理那些我们无法测量的事物。
正如设计界的思想家罗杰?马丁所言,领袖需要“兼听则明”。评价21世纪的商界领袖,不再看他/她能排除多少不确定性,而要看他/她能忍受多少不确定性。
大数据不敌直觉力。数据也许能预测新问题,也许能找到已知问题的新解决办法,不过只有人类的直觉和巧妙心思才能提出开创性的新想法。这是独一无二的人类天赋——它远远超过解决一个问题,超过满足某个功能需求的层次。
同样的,如果我们量化所有的人际关系,就无法给人类的判断力留下任何回旋余地。因为我们常常把对人们的感觉和他们的行为混合在一起,我们的判断力比二进制数字更加复杂。它意味着我们可以对双重行为有着更细微的评估和反应,我们可以选择将失败视为创新的先决条件。很难想象,如果我们丧失原谅的能力,如何还能朝着任何目标前进。
让我们抵抗冲向数据的欲望,花时间沉住气,必要时再加快步伐。让我们允许自己不时从数据中解脱出来,去思考什么才是真正重要的东西。让我们用数据来讲述自己故事,但不要让数据成为我们唯一的故事。
数据分析咨询请扫描二维码
在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06