python中利用队列asyncio.Queue进行通讯详解
本文主要给大家介绍了关于python用队列asyncio.Queue通讯的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。
asyncio.Queue与其它队列是一样的,都是先进先出,它是为协程定义的
例子如下:
import asyncio
async def consumer(n, q):
print('consumer {}: starting'.format(n))
while True:
print('consumer {}: waiting for item'.format(n))
item = await q.get()
print('consumer {}: has item {}'.format(n, item))
if item is None:
# None is the signal to stop.
q.task_done()
break
else:
await asyncio.sleep(0.01 * item)
q.task_done()
print('consumer {}: ending'.format(n))
async def producer(q, num_workers):
print('producer: starting')
# Add some numbers to the queue to simulate jobs
for i in range(num_workers * 3):
await q.put(i)
print('producer: added task {} to the queue'.format(i))
# Add None entries in the queue
# to signal the consumers to exit
print('producer: adding stop signals to the queue')
for i in range(num_workers):
await q.put(None)
print('producer: waiting for queue to empty')
await q.join()
print('producer: ending')
async def main(loop, num_consumers):
# Create the queue with a fixed size so the producer
# will block until the consumers pull some items out.
q = asyncio.Queue(maxsize=num_consumers)
# Scheduled the consumer tasks.
consumers = [
loop.create_task(consumer(i, q))
for i in range(num_consumers)
]
# Schedule the producer task.
prod = loop.create_task(producer(q, num_consumers))
# Wait for all of the coroutines to finish.
await asyncio.wait(consumers + [prod])
event_loop = asyncio.get_event_loop()
try:
event_loop.run_until_complete(main(event_loop, 2))
finally:
event_loop.close()
输出如下:
consumer 0: starting
consumer 0: waiting for item
consumer 1: starting
consumer 1: waiting for item
producer: starting
producer: added task 0 to the queue
producer: added task 1 to the queue
consumer 0: has item 0
consumer 1: has item 1
producer: added task 2 to the queue
producer: added task 3 to the queue
consumer 0: waiting for item
consumer 0: has item 2
producer: added task 4 to the queue
consumer 1: waiting for item
consumer 1: has item 3
producer: added task 5 to the queue
producer: adding stop signals to the queue
consumer 0: waiting for item
consumer 0: has item 4
consumer 1: waiting for item
consumer 1: has item 5
producer: waiting for queue to empty
consumer 0: waiting for item
consumer 0: has item None
consumer 0: ending
consumer 1: waiting for item
consumer 1: has item None
consumer 1: ending
producer: ending
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值.
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21