如何从量化的角度观看股票传统的技术指标
这次我们对比的传统技术指标有MACD、KDJ、布林带(Bollinger Bands)等以及其构成的其他指标和交易方法。
首先需要说明的是,在不同的量化投资领域,技术分析的地位绝对是不同的。
在高频交易领域,技术分析的用处应该不大。Irene Aldridge的《High-Frequency Trading》中提到过两篇论文,指出技术分析可以帮助推测限价指令簿(Limit Order Book)。
对于量化选股,技术分析的用处也不会太大。
对于CTA(管理期货基金)来说,特别是Trend-following CTA来说,传统技术分析绝对是基石。
技术分析的优点很多:简单易行,资金容量大。更重要的是,在大尺度上技术指标永远不会失效,追涨杀跌是人类的本性。但是,技术分析的缺点也是明显:回撤大,修复期长,大尺度上同质化很严重。所以,对于CTA而言,你越是能够在技术分析以外找到稳定盈利的策略,技术指标对于你的重要性就越低,在组合中的权重就越低。如果完全无法在技术分析以外找到策略,饥三年,饱三年,技术指标能够保你不死。
还有一点就是技术指标量化后的参数调整,调整好了,基本上都能找到在回测上稳赚不赔的策略,但是一旦市场状态转化发生(Regime Switch),出了回测,一实盘模拟基本就废了。高频还可以通过data mining出个最优参数,中低频还是不要想了。
最后值得说的是,换个角度想,量化工具就是新时代的技术工具。现在种类繁多操作简单的技术工具,也不是一开始就有的,都是有人用的好逐渐推广的。
简单技术分析最后高度趋同带不来超额收益,量化工具也有这趋势。
目前的一些主流量化思路起码十年前都已经有对应的技术工具,只是缺乏公开版本。
见过一些老交易员写的小程序,包括一大堆VBA。
这些程序和VBA提供信号,交易员手动调仓。而有些品种上已经可以半自动化交易。
这些策略里面流动性跟踪,相关性配对套利,多因子选股等等已经全部有了。当然里面使用的数学模型和具体实现都非常粗糙,拍脑门参数何其多。。。。不过在十年前也是钵满盆满了。
可以说,现在做主流量化的一些模型,只是在吃人家吃剩下的,也不一定能保证吃得好,吃得妙,就不要嘲笑20多年前用技术指标的人了。
况且,因为技术指标失效就舍弃这种工具,还不如在当时的数据下研究下当时奏效的一些技术,说不定有助于我们找到一些别人没有发现的信息,那么绝对也值得去琢磨一二。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21