手把手教你使用【python】在京东量化平台完成简单策略回测
今天来教大家使用量化平台中Python的部分,完成一个简单的策略回测。
首先,回测界面是长这个样子的
可以看到,左半边的大部分区域是编辑代码的地方,开发环境会自动识别Python语言的关键词。在代码区上面的设置标志里面可以个性化调节开发环境的视觉效果。
Python的回测代码主要包括init()函数,handle_data()函数,以及其他用户自定义内容。如果在每天开盘前要进行额外的处理或计算,可选择添加before_trade()函数。
def init(context):
# 这里用来写策略开始时要做什么
注释
其中,init()是初始化函数,可以设置基准,滑点,佣金等回测参数,也可以利用context自定义变量。在Python及大部分其他编程语言中,在局部变量只在该变量定义的函数体有效,在其他函数体内是无效的。而context被定义为一个局部变量,可以把内容在不同函数代码之间传导。该函数在回测开始时运行一次。
def handle_data(context, data_dict):
# 这里用来写每天开盘后要做什么,可以是计算,输出日志,或者下单
注释
handle_data()是每个交易时间点(分钟/日)时自动运行一次的函数,可以在此函数内设置交易判断和下单,是策略核心逻辑所在。
def before_trade(context):
# 非强制,在这里写每天开盘之前要做什么,不可下单
注释
用户可以按照Python语言规则定义其他函数,包括运算/数据处理函数,也可以通过task()函数设置自定义函数的执行频率和执行时间。
III、编译策略代码
1、确定策略框架内容
举个栗子,用一个简单的策略为例来演示这个过程。
策略的内容是对贵州茅台(600519.SH)进行择时
如果前一天收益率大于沪深300收益率,则买入持仓
如果前一天收益率小于沪深300收益率,则不持仓。
只买卖一只股票操作是很简单的。首先,我们在init()函数里面设置我们的股票(贵州茅台(600519.SH))和比较标的(沪深300(000300.SH)):
# init方法是您的初始化逻辑。context对象可以在任何方法之间传递。
def init(context):
context.stock = '600519.SH'
context.set_benchmark = '000300.SH'
注释
1)只要在“#”后面的内容都是注释,不会被Python编译
2)设置stock和set_benchmark对象时,一定要在前面加上“context.”,这样才能传递到之后的函数中。设置标的后,回测中的基准曲线和收益将采用设置的指数。
2、确认每个交易日的逻辑:
l 获取目标股票和标的的历史价格
# 日或分钟或实时数据更新,将会调用这个方法
def handle_data(context, data_dict):
price = get_history(2, '1d', 'close')[context.stock]
priceBm = get_history(2, '1d', 'close')[context.set_benchmark]
注释
1)其中context.stock和context.set_benchmark都在init()函数中定义好了。
2)get_history()函数是京东量化平台封装的取历史交易数据的函数。其中“2”代表要取历史两天的数据,以便计算上个交易日的收益。“’1d’”和“'close’”分别表示数据频率为天,所需数据为收盘价。
3)返回的价格为pandas.Series类型。各个平台函数的使用方法可以查看帮助板块中的API文档。
l 定义收益率
为了方便计算收益率,自定义了一个CalRet()函数,输入连续两天的价格,计算第二天的收益率:
def CalRet(price):
r = (price[1] - price[0]) / price[0]
return r
注释
1)这段函数写在handle_data()之前。自定义函数编辑的语法符合Python语法即可。
2)这个函数会返回float类型的r。
l 计算目标股票和标的的收益率
我们回到handle_data()函数,利用刚刚定义的函数和获取的股票及指数价格计算收益率:
ytdRet = CalRet(price)
bmRet = CalRet(priceBm)
注释
1)以上函数可以得到上个交易日股票的收益率ytdRet和指数收益率bmRet。
3、确认股票买入卖出的逻辑:
如果ytdRet大于bmRet,则全仓买入平安银行股票,否则清仓
if ytdRet > bmRet:
order_target_percent(context.stock, 1)
else:
order_target_percent(context.stock, 0)
注释
1)order_target_percent()是量化平台编辑的下单函数,可以设置某个股票的仓位至一个百分比。
2)平台同样支持加减仓,用手数,金额等方式下单,详见API文档。
4、确认所有策略逻辑
以上,所有的策略逻辑就完成啦!
def init(context):
context.stock = '600519.SH'
context.set_benchmark = '000300.SH'
def handle_data(context, data_dict):
price = get_history(2, '1d', 'close')[context.stock]
priceBm = get_history(2, '1d', 'close')[context.set_benchmark]
ytdRet = CalRet(price)
bmRet = CalRet(priceBm)
if ytdRet > bmRet:
order_target_percent(context.stock, 1)
else:
order_target_percent(context.stock, 0)
def CalRet(price):
r = (price[1] - price[0]) / price[0]
return r
完成简单的策略回测
现在,我们就完成了这个策略的设计。回测平台会自动按照这个逻辑,在回测区间内完成交易。
选定回测的时间区间。初始金额以及调仓频率,如下图
我们设置回测区间为2015年1月1日-2016年1月1日,初始金额为一百万,调仓频率为每天,点击“运行回测”。结果如下:
注释
1)回测:策略回测就是拿到证券市场历史的财务数据、行情数据,对现有的策略进行历史回测检验,通过回测结果来修正自己的策略,从而验证策略在过去市场的有效性以及稳定性。
2)回测输出结果
I、我们可以看到在回测区间内,策略和基准的净值曲线,每天盈亏,买卖等图像,以及回测的技术指标。同时可以查看相对收益,对数收益等。
II、在左边的交易详情,持仓和输出日志中可以看到回测中的具体情况,方便进行归因分析,调整策略等等,同时还可以查看历史回测记录。
III、我们可以看到,这个策略能够跑赢大盘。当然,这只是一个例子。
3)回测的评判
I、收益,回测收益和基准收益的对比,收益越高盈利能力越强
II、最大回撤,最大回撤要低,越低代表亏损幅度越低,策略越稳定
III、交易频率,点击交易详情可以查看策略交易的频次,频率越高,策略越稳定
III、把回测的策略发布到策略榜,还可以分析策略的晨星风格及收益归因分析,多角度的判断策略的好坏
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10