手把手教你使用【python】在京东量化平台完成简单策略回测
今天来教大家使用量化平台中Python的部分,完成一个简单的策略回测。
首先,回测界面是长这个样子的
可以看到,左半边的大部分区域是编辑代码的地方,开发环境会自动识别Python语言的关键词。在代码区上面的设置标志里面可以个性化调节开发环境的视觉效果。
Python的回测代码主要包括init()函数,handle_data()函数,以及其他用户自定义内容。如果在每天开盘前要进行额外的处理或计算,可选择添加before_trade()函数。
def init(context):
# 这里用来写策略开始时要做什么
注释
其中,init()是初始化函数,可以设置基准,滑点,佣金等回测参数,也可以利用context自定义变量。在Python及大部分其他编程语言中,在局部变量只在该变量定义的函数体有效,在其他函数体内是无效的。而context被定义为一个局部变量,可以把内容在不同函数代码之间传导。该函数在回测开始时运行一次。
def handle_data(context, data_dict):
# 这里用来写每天开盘后要做什么,可以是计算,输出日志,或者下单
注释
handle_data()是每个交易时间点(分钟/日)时自动运行一次的函数,可以在此函数内设置交易判断和下单,是策略核心逻辑所在。
def before_trade(context):
# 非强制,在这里写每天开盘之前要做什么,不可下单
注释
用户可以按照Python语言规则定义其他函数,包括运算/数据处理函数,也可以通过task()函数设置自定义函数的执行频率和执行时间。
III、编译策略代码
1、确定策略框架内容
举个栗子,用一个简单的策略为例来演示这个过程。
策略的内容是对贵州茅台(600519.SH)进行择时
如果前一天收益率大于沪深300收益率,则买入持仓
如果前一天收益率小于沪深300收益率,则不持仓。
只买卖一只股票操作是很简单的。首先,我们在init()函数里面设置我们的股票(贵州茅台(600519.SH))和比较标的(沪深300(000300.SH)):
# init方法是您的初始化逻辑。context对象可以在任何方法之间传递。
def init(context):
context.stock = '600519.SH'
context.set_benchmark = '000300.SH'
注释
1)只要在“#”后面的内容都是注释,不会被Python编译
2)设置stock和set_benchmark对象时,一定要在前面加上“context.”,这样才能传递到之后的函数中。设置标的后,回测中的基准曲线和收益将采用设置的指数。
2、确认每个交易日的逻辑:
l 获取目标股票和标的的历史价格
# 日或分钟或实时数据更新,将会调用这个方法
def handle_data(context, data_dict):
price = get_history(2, '1d', 'close')[context.stock]
priceBm = get_history(2, '1d', 'close')[context.set_benchmark]
注释
1)其中context.stock和context.set_benchmark都在init()函数中定义好了。
2)get_history()函数是京东量化平台封装的取历史交易数据的函数。其中“2”代表要取历史两天的数据,以便计算上个交易日的收益。“’1d’”和“'close’”分别表示数据频率为天,所需数据为收盘价。
3)返回的价格为pandas.Series类型。各个平台函数的使用方法可以查看帮助板块中的API文档。
l 定义收益率
为了方便计算收益率,自定义了一个CalRet()函数,输入连续两天的价格,计算第二天的收益率:
def CalRet(price):
r = (price[1] - price[0]) / price[0]
return r
注释
1)这段函数写在handle_data()之前。自定义函数编辑的语法符合Python语法即可。
2)这个函数会返回float类型的r。
l 计算目标股票和标的的收益率
我们回到handle_data()函数,利用刚刚定义的函数和获取的股票及指数价格计算收益率:
ytdRet = CalRet(price)
bmRet = CalRet(priceBm)
注释
1)以上函数可以得到上个交易日股票的收益率ytdRet和指数收益率bmRet。
3、确认股票买入卖出的逻辑:
如果ytdRet大于bmRet,则全仓买入平安银行股票,否则清仓
if ytdRet > bmRet:
order_target_percent(context.stock, 1)
else:
order_target_percent(context.stock, 0)
注释
1)order_target_percent()是量化平台编辑的下单函数,可以设置某个股票的仓位至一个百分比。
2)平台同样支持加减仓,用手数,金额等方式下单,详见API文档。
4、确认所有策略逻辑
以上,所有的策略逻辑就完成啦!
def init(context):
context.stock = '600519.SH'
context.set_benchmark = '000300.SH'
def handle_data(context, data_dict):
price = get_history(2, '1d', 'close')[context.stock]
priceBm = get_history(2, '1d', 'close')[context.set_benchmark]
ytdRet = CalRet(price)
bmRet = CalRet(priceBm)
if ytdRet > bmRet:
order_target_percent(context.stock, 1)
else:
order_target_percent(context.stock, 0)
def CalRet(price):
r = (price[1] - price[0]) / price[0]
return r
完成简单的策略回测
现在,我们就完成了这个策略的设计。回测平台会自动按照这个逻辑,在回测区间内完成交易。
选定回测的时间区间。初始金额以及调仓频率,如下图
我们设置回测区间为2015年1月1日-2016年1月1日,初始金额为一百万,调仓频率为每天,点击“运行回测”。结果如下:
注释
1)回测:策略回测就是拿到证券市场历史的财务数据、行情数据,对现有的策略进行历史回测检验,通过回测结果来修正自己的策略,从而验证策略在过去市场的有效性以及稳定性。
2)回测输出结果
I、我们可以看到在回测区间内,策略和基准的净值曲线,每天盈亏,买卖等图像,以及回测的技术指标。同时可以查看相对收益,对数收益等。
II、在左边的交易详情,持仓和输出日志中可以看到回测中的具体情况,方便进行归因分析,调整策略等等,同时还可以查看历史回测记录。
III、我们可以看到,这个策略能够跑赢大盘。当然,这只是一个例子。
3)回测的评判
I、收益,回测收益和基准收益的对比,收益越高盈利能力越强
II、最大回撤,最大回撤要低,越低代表亏损幅度越低,策略越稳定
III、交易频率,点击交易详情可以查看策略交易的频次,频率越高,策略越稳定
III、把回测的策略发布到策略榜,还可以分析策略的晨星风格及收益归因分析,多角度的判断策略的好坏
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10