编写量化策略需要注意的几个细节问题
量化平台的出现,省去了quanter们自己打数据结构的时间和精力,可以集中在策略的想法构建上。但量化平台虽然好,还是会有一些功能会受到限制,因此,有时候还是需要自己清洗数据和编写回测程序。这里总结一下在量化策略编写中需要注意的数据处理问题,供参考:
1.数据复权。在量化策略的编写中,是需要对原始的开盘和收盘价进行复权的,以处理因为分红、配股等因素造成的股价变动。很多量化平台都已经对开盘价和收盘价进行了复权处理,可以直接用,但自己进行数据清洗的时候,尤其是在计算日收益率的时候,一定要用复权价。
2.剔除涨停股票。量化策略在实盘跑的时候,可能会遇到各种各样的实际操作问题,比如反转策略,基本逻辑很简单,就是选好那些排序期累计收益率排名靠前的股票并买进持有,然而有可能面临的问题是,在建仓那天,已经选好的那些股票有可能会开盘涨停,根本没办法买进。所以,在自己编写量化策略回测的时候,要将涨停股票在买进的时候剔除,这样回测的结果才更加接近实际。
3.剔除停牌股票。在因子选股过程中,一般会有一个观测期(或者称为排序期),根据这个观测期内因子表现,来选择表现较好的股票来建仓。然而,可能遇到的问题是,在观测期内,有些股票会出现停牌,有的还会停牌好多天。在自己写策略的时候,要注意,在观测期内是需要把那些停牌时间较长的股票剔除掉的,因为停牌往往意味着会有重大信息发布,可能会对当前的选股因子产生较大影响。剔除方法也比较简单,例如观测期为90天,那么如果一只股票的停牌时间超过了90天的五分之一,即18天,那么就可以剔除它。
4.关于平仓平不掉的问题。编写好的量化策略,在实盘交易的时候有可能遇到这么一种情况,就是在想卖的时候卖不掉(比如跌停),还是例如反转策略,在一个持有期结束,准备进入下一个持有期的时候,是需要把现有仓位卖掉再换新的仓位,然而,如果遇到跌停,那么根本就平不掉。如果量化策略回测中没有考虑这种情况,就可能会跟实际情况有差异。应对策略也很简单,可以继续持有现在平不掉的股票到可以平掉的那一天再平掉,这就需要把回测代码再进一步细化了。幸运的是,这种问题属于比较细节的问题,平不掉的情况遇到的也不会太多,所以对回测结果也不会产生很大影响(不像交易费用那样影响巨大),在因子测试等简单回测中,不考虑这个问题应该没什么大碍。但如果真正实盘回测,我觉得还是有必要把这个问题用代码描述出来的,这样才能更接近实际交易。
数据分析咨询请扫描二维码
在如今的数据驱动时代,掌握数据分析的工具和方法不仅是提高工作效率的关键,也是开拓职业机会的重要技能。数据分析涉及从数据的 ...
2024-11-08在现代商业环境中,企业正在逐步认识到数据挖掘技术在客户行为分析中的重要性。通过深度分析客户数据,这项技术不仅可以帮助企业 ...
2024-11-08数据挖掘分析是从大量数据中发现隐藏模式和有用信息的过程。尤其是在图数据挖掘中,提供了分析复杂关系和结构的独特视角。图数据 ...
2024-11-08在当今快速发展的商业环境中,提高运营效率已成为企业取得成功的关键因素。企业需要通过优化工作流程、利用技术创新和提升员工技 ...
2024-11-08Python 是一门非常适合初学者学习的编程语言。其简洁明了的语法、丰富的功能库,以及广泛的应用领域,使其成为学习编程的理想选 ...
2024-11-08在当今快速变化的商业环境中,金融数字化已经成为中小企业(SMEs)发展的关键驱动力。通过采用数字工具和技术,中小企业能够提高 ...
2024-11-08中小企业在全球经济中扮演着重要角色,然而,面对数字化浪潮,这些企业如何有效转型成为一大挑战。数字化转型不仅是技术的升级, ...
2024-11-08选择合适的数据分析方法是数据分析流程中的关键环节。它影响最终结论的准确性和可信度。在这个过程中,需要综合考虑数据的性质、 ...
2024-11-08在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06