word embeddings介绍
之前建立的情感分类的模型都是Bag of words方法,仅仅统计词出现的次数这种方法破坏了句子的结构。这样的结构,我们也可以使用如下的向量(one hot 编码)表示句子「The cat sat on the mat」:
然而,在实际应用中,我们希望学习模型能够在词汇量很大(10,000 字以上)的情况下进行学习。从这里能看到使用「独热码」表示单词的效率问题——对这些词汇建模的任何神经网络的输入层至少都有 17000,000 个节点。因此,我们需要使用更高效的方法表示文本数据,而这种方法不仅可以保存单词的上下文的信息,而且可以在更低的维度上表示。这是word embeddings 方法发明的初衷。
word embeddings就是将一个个词映射到低维连续向量(如下图所示) :
这种向量的思想就是将相似的词映射到相似方向,所以,语义相似性就可以被编码了。相似性一般可以通过余弦相似度来衡量:
安装TensorFlow和Keras
# 安装并加载Keras包install.packages("devtools") devtools::install_github("rstudio/keras") install_keras()library(keras)# 安装并加载TensorFlow包devtools::install_github("rstudio/tensorflow")library(tensorflow) install_tensorflow()
注:安装TensorFlow和Keras前需要安装Anaconda,Anaconda尽量装最新版本的,Anaconda在Windows安装有一些坑,我是把Java环境删掉还有使用默认路径才成功安装了Anaconda。
检测是否安装成功
# 输入下面代码sess = tf$Session() hello <- tf$constant('Hello, TensorFlow!') sess$run(hello)
OK,如果没有问题的话,你的结果也将是如上图所示,则表明你已安装成功。
LSTM原理
长短期记忆网络——通常简称“LSTMs”,是一种特殊的RNN,能够学习长期依赖关系,它可以桥接超过1000步的时间间隔的信息。LSTM由Hochreiter和Schmidhuber (1997)提出,在后期工作中又由许多人进行了调整和普及(除了原始作者之外,许多人为现代LSTM做出了贡献)。LSTM在各种各样的问题上工作非常好,现在被广泛使用。
LSTMs被设计出来是为了避免长期的依赖性问题,记忆长时间的信息实际上是他们的固有行为,而不是去学习,这点和传统的具有强大的表征学习能力的深度神经网络不同。
所有的RNNs(包括LSTM)都具有一连串重复神经网络模块的形式。在标准的RNNs中,这种重复模块有一种非常简单的结构,比如单个tanh层:
什么是tanh?中文叫双曲正切函数,属于神经网络隐藏层的activation function(激活函数)中的一种。别以为是什么好厉害的东西,其实就是一个简单的以原点对称的值域为[-1,1]的非线性函数。而神经网络中比较常见的另外一个激活函数sigmoid 函数,则不过是把tanh函数往上平移到[0,1]的区间,这个函数在LSTM也会用到。
LSTM也有像RNN这样的链式结构,只不过重复模块有着与传统的RNN不同的结构,比传统的RNN复杂不少:不只是有一个神经网络层,而是有四个神经网络层,以一个非常特殊的方式进行交互。
不用担心看不懂细节部分是什么意思,稍后我们将逐步浏览LSTM图。现在,让我们试着去熟悉我们将要使用的符号。
在上面所示的图中,我们对以上符号进行如下定义:
黄块表示学习神经网络层(tanh层或sigmoid层);
粉色圆圈表示按位操作,如向量加法或者向量点乘;
每条线代表着一整个向量(vector),用来表示从一个节点的输出到另一个节点的输入;
合并的线代表连接或者说是拼接;
分叉表示其内容被复制,复制内容将转到不同的位置
LSTMs背后的核心理念
LSTMs的关键是细胞状态(cell state),是一条水平线,贯穿图的顶部。而Cell 的状态就像是传送带,它的状态会沿着整条链条传送,而只有少数地方有一些线性交互。
因此“门”就是LSTM控制信息通过的方式,这里的” σ “指的是 sigmoid 函数。Sigmoid 层的输出值在 0 到 1 间,表示每个部分所通过的信息。“0” 意味着“让任何事情无法通过”或者说成”忘记所有的事“;“ 1 ”意味着”让一切都通过!“ 或者说”我要记住这一切! “
一个 LSTM 有三个这样的门,分别是“输入门”、遗忘门“和 ”输出门“,在单一模块里面控制 cell 的状态。
遗忘门
首先,LSTM 的第一步就是让信息通过”遗忘门“,决定需要从 cell 中忘掉哪些信息。它的输入是 ht-1 和 xt。另外,我们之所以使用sigmoid激活函数是因为我们所需要的数字介于0至1之间。Ct−1 就是每个在 cell 中所有在 0 和 1 之间的数值,就像我们刚刚所说的,0 代表全抛弃,1 代表全保留。
看到这里应该有朋友会问什么是ht,ht是LSTM层在t时刻的输出,但不是最终的输出,ht仅仅是LSTM层输出的向量,要想得到最终的结果还要连接一个softmax层(sigmoid函数的输出是”0“”1“,但是使用softmax函数能在三个类别以上的时候输出相应的概率以解决多分类问题),而x就是我们的输入,是一个又一个的词语。
输入门
下一步,我们需要决定什么样的信息应该被存储起来。这个过程主要分两步。首先是 sigmoid 层(这就是“输入门”)决定我们需要更新哪些值;随后,tanh 层生成了一个新的“候选添加记忆” C`t,最后,我们将这两个值结合起来。结合后能够加入cell的状态(长期记忆)中。
接下来我们可以更新 cell (长期记忆)的状态了。首先第一步将旧状态与通过遗忘门得到的 ft 相乘,忘记此前我们想要忘记的内容,然后加上通过输入门和tanh层得到的候选记忆 C`t。在忘记我们认为不再需要的记忆并保存输入信息的有用部分后,我们就会得到更新后的长期记忆。
输出门
接下来我们来更新一下ht,即输出的内容,这部分由输出门来完成。首先,我们把
cell 状态通过 tanh 函数,将输出值保持在-1 到 1 间。随后,前一时刻的输出ht-1和xt会通过一个 sigmoid 层,决定
cell 状态输出哪一部分。之后,我们再乘以 sigmoid 门的输出值,就可以得到结果了。
R上用LSTM做情感分类
max_features <-20000batch_size <-32# Cut texts after this number of words (among top max_features most common words)maxlen <-80 cat('Loading data...\n') imdb <- dataset_imdb(num_words = max_features) x_train <- imdb$train$x y_train <- imdb$train$y x_test <- imdb$test$x y_test <- imdb$test$y view(x_train)
IMDB数据集包含有2.5万条电影评论,被标记为积极和消极。影评会经过预处理,把每一条影评编码为一个词索引(数字)sequence(前面的一种word embeddings方法) 。
cat(length(x_train),'train sequences\n') cat(length(x_test),'test sequences\n') cat('Pad sequences (samples x time)\n') x_train <- pad_sequences(x_train, maxlen = maxlen) x_test <- pad_sequences(x_test, maxlen = maxlen) cat('x_train shape:', dim(x_train),'\n') cat('x_test shape:', dim(x_test),'\n')
cat('Build model...\n') model <- keras_model_sequential() model %>% layer_embedding(input_dim = max_features, output_dim =128) %>% layer_lstm(units =64, dropout =0.2, recurrent_dropout =0.2) %>% layer_dense(units =1, activation ='sigmoid')
当然,可以尝试使用不同的优化器和不同的优化器配置:
model %>% compile( loss ='binary_crossentropy', optimizer ='adam', metrics = c('accuracy') ) cat('Train...\n') model %>% fit( x_train, y_train, batch_size = batch_size, epochs =15, validation_data = list(x_test, y_test) )
上面代码的训练过程如下图所示(我电脑大概用了20min):
# 模型的准确度度量scores <- model %>% evaluate( x_test, y_test, batch_size = batch_size ) cat('Test score:', scores[[1]]) cat('Test accuracy', scores[[2]])
接下来,我们再对比其他模型,不妨以随机森林为例:
library(randomForest) y_train <- as.factor(y_train) y_test <- as.factor(y_test) rf <- randomForest(x=x_train,y=y_train,ntree=1000) predict <- predict(rf,newdata=x_test)
很显然,集成算法随机森林远远没有LSTM出来的效果好。今天关于基于R语言的深度学习就介绍到这里。最后,很高兴和大家一起学习R上的深度学习。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16