R语言利用caret包比较模型性能差异
我们可以通过重采样的方法得对每一个匹配模型的统计信息,包括ROC曲线,灵敏度与特异度,然后基于这些统计信息来比较不同模型的性能差异。
操作
利用上节的信息,准备好glm分类模型,svm分类模型,rpart分类模型,并存放在glm.model,svm.model,rpart.model。
cv.values = resamples(list(glm = glm.model,svm =svm.model,rpart = rpart.model))
> summary(cv.values)
Call:
summary.resamples(object = cv.values)
Models: glm, svm, rpart
Number of resamples: 30
ROC
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
glm 0.7597790 0.7927740 0.8040455 0.8106454 0.8347961 0.8760824 0
svm 0.8191998 0.8786439 0.8945208 0.8947360 0.9196775 0.9562556 0
rpart 0.6064540 0.7150320 0.7608241 0.7556544 0.8086731 0.8554750 0
Sens
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
glm 0.08823529 0.1764706 0.2058824 0.2124930 0.2516807 0.3235294 0
svm 0.44117647 0.5294118 0.5882353 0.5956863 0.6470588 0.7941176 0
rpart 0.20000000 0.4117647 0.4705882 0.4787955 0.5514706 0.7352941 0
Spec
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
glm 0.9393939 0.9645119 0.9721581 0.9702721 0.9796954 0.9898477 0
svm 0.9494949 0.9695431 0.9771574 0.9755004 0.9847716 0.9898990 0
rpart 0.9492386 0.9746193 0.9796954 0.9780359 0.9848485 1.0000000 0
使用dotplot函数绘制重采样在ROC曲线度量中的结果:
dotplot(cv.values,metric = "ROC")
使用箱线图绘制重采样结果:
bwplot(cv.values,layout=c(3,1))
重采样结果箱线图
说明
我们使用resample函数生成各个模型的统计信息,再调用summary函数输出三个模型在ROC、灵敏度及特异性上的统计信息。使用dotplot方法处理重采样结果来观测不同模型ROC差异,最后,采用箱线图在同一张图上对ROC、灵敏度及特异方面的差别进行比较。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30