R语言之-caret包应用
caret包应用之一:数据预处理
在进行数据挖掘时,我们会用到R中的很多扩展包,各自有不同的函数和功能。如果能将它们综合起来应用就会很方便。caret包(Classification
and Regression
Training)就是为了解决分类和回归问题的数据训练而创建的一个综合工具包。下面的例子围绕数据挖掘的几个核心步骤来说明其应用。
本例涉及到的数据是一个医学实验数据,载入数据之后可以发现其样本数为528,自变量数为342,mdrrDescr为自变量数据框,mdrrClass为因变量。
library(caret)
data(mdrr)
本例的样本数据所涉及到的变量非常多,需要对变量进行初步降维。其中一种需要删除的变量是常数自变量,或者是方差极小的自变量,对应的命令是nearZeroVar,可以看到新数据集的自变量减少到了297个。
zerovar=nearZeroVar(mdrrDescr)
newdata1=mdrrDescr[,-zerovar]
另一类需要删除的是与其它自变量有很强相关性的变量,对应的命令是findcorrelation。自变量中还有可能存在多重共线性问题,可以用findLinearCombos命令将它们找出来。这样处理后自变量减少为94个。
descrCorr = cor(newdata1)
highCorr = findCorrelation(descrCorr, 0.90)
newdata2 = newdata1[, -highCorr]
comboInfo = findLinearCombos(newdata2)
newdata2=newdata2[, -comboInfo$remove]
我们还需要将数据进行标准化并补足缺失值,这时可以用preProcess命令,缺省参数是标准化数据,其高级功能还包括用K近邻和装袋决策树两种方法来预测缺失值。此外它还可以进行cox幂变换和主成分提取。
Process = preProcess(newdata2)
newdata3 = predict(Process, newdata2)
最后是用createDataPartition将数据进行划分,分成75%的训练样本和25%检验样本,类似的命令还包括了createResample用来进行简单的自助法抽样,还有createFolds来生成多重交叉检验样本。
inTrain = createDataPartition(mdrrClass, p = 3/4, list = FALSE)
trainx = newdata3[inTrain,]
testx = newdata3[-inTrain,]
trainy = mdrrClass[inTrain]
testy = mdrrClass[-inTrain]
在建模前还可以对样本数据进行图形观察,例如对前两个变量绘制箱线图
featurePlot(trainx[,1:2],trainy,plot=’box’)
caret包应用之二:特征选择
在进行数据挖掘时,我们并不需要将所有的自变量用来建模,而是从中选择若干最重要的变量,这称为特征选择(feature
selection)。一种算法就是后向选择,即先将所有的变量都包括在模型中,然后计算其效能(如误差、预测精度)和变量重要排序,然后保留最重要的若干变量,再次计算效能,这样反复迭代,找出合适的自变量数目。这种算法的一个缺点在于可能会存在过度拟合,所以需要在此算法外再套上一个样本划分的循环。在caret包中的rfe命令可以完成这项任务。
首先定义几个整数,程序必须测试这些数目的自变量.
subsets = c(20,30,40,50,60,70,80)
然后定义控制参数,functions是确定用什么样的模型进行自变量排序,本例选择的模型是随机森林即rfFuncs,可以选择的还有lmFuncs(线性回归),nbFuncs(朴素贝叶斯),treebagFuncs(装袋决策树),caretFuncs(自定义的训练模型)。
method是确定用什么样的抽样方法,本例使用cv即交叉检验, 还有提升boot以及留一交叉检验LOOCV
ctrl= rfeControl(functions = rfFuncs, method = “cv”,verbose = FALSE, returnResamp = “final”)
最后使用rfe命令进行特征选择,计算量很大,这得花点时间
Profile = rfe(newdata3, mdrrClass, sizes = subsets, rfeControl = ctrl)
观察结果选择50个自变量时,其预测精度最高
print(Profile)
Variables Accuracy Kappa AccuracySD KappaSD Selected
20 0.8200 0.6285 0.04072 0.08550
30 0.8200 0.6294 0.04868 0.10102
40 0.8295 0.6487 0.03608 0.07359
50 0.8313 0.6526 0.04257 0.08744 *
60 0.8277 0.6447 0.03477 0.07199
70 0.8276 0.6449 0.04074 0.08353
80 0.8275 0.6449 0.03991 0.08173
94 0.8313 0.6529 0.03899 0.08006
用图形也可以观察到同样结果
plot(Profile)
特征选择
下面的命令则可以返回最终保留的自变量
Profile$optVariables
caret包应用之三:建模与参数优化
在进行建模时,需对模型的参数进行优化,在caret包中其主要函数命令是train。
首先得到经过特征选择后的样本数据,并划分为训练样本和检验样本
newdata4=newdata3[,Profile$optVariables]
inTrain = createDataPartition(mdrrClass, p = 3/4, list = FALSE)
trainx = newdata4[inTrain,]
testx = newdata4[-inTrain,]
trainy = mdrrClass[inTrain]
testy = mdrrClass[-inTrain]
然后定义模型训练参数,method确定多次交叉检验的抽样方法,number确定了划分的重数, repeats确定了反复次数。
fitControl = trainControl(method = “repeatedcv”, number = 10, repeats = 3,returnResamp = “all”)
确定参数选择范围,本例建模准备使用gbm算法,相应的参数有如下四项
gbmGrid = expand.grid(.interaction.depth = c(1, 3),.n.trees = c(50,
100, 150, 200, 250, 300),.shrinkage = 0.1,.n.minobsinnode = 10)
利用train函数进行训练,使用的建模方法为提升决策树方法,
gbmFit1 = train(trainx,trainy,method = “gbm”,trControl = fitControl,tuneGrid = gbmGrid,verbose = FALSE)
从结果可以观察到interaction.depth取1,n.trees取150时精度最高
interaction.depth n.trees Accuracy Kappa Accuracy SD Kappa SD
1 50 0.822 0.635 0.0577 0.118
1 100 0.824 0.639 0.0574 0.118
1 150 0.826 0.643 0.0635 0.131
1 200 0.824 0.64 0.0605 0.123
1 250 0.816 0.623 0.0608 0.124
1 300 0.824 0.64 0.0584 0.119
3 50 0.816 0.621 0.0569 0.117
3 100 0.82 0.631 0.0578 0.117
3 150 0.815 0.621 0.0582 0.117
3 200 0.82 0.63 0.0618 0.125
3 250 0.813 0.617 0.0632 0.127
3 300 0.812 0.615 0.0622 0.126
同样的图形观察
plot(gbmFit1)
caret包应用之四:模型预测与检验
模型建立好后,我们可以利用predict函数进行预测,例如预测检测样本的前五个
predict(gbmFit1, newdata = testx)[1:5]
为了比较不同的模型,还可用装袋决策树建立第二个模型,命名为gbmFit2
gbmFit2= train(trainx, trainy,method = “treebag”,trControl = fitControl)
models = list(gbmFit1, gbmFit2)
另一种得到预测结果的方法是使用extractPrediction函数,得到的部分结果如下显示
predValues = extractPrediction(models,testX = testx, testY = testy)
head(predValues)
obs pred model dataType object
1 Active Active gbm Training Object1
2 Active Active gbm Training Object1
3 Active Inactive gbm Training Object1
4 Active Active gbm Training Object1
5 Active Active gbm Training Object1
从中可提取检验样本的预测结果
testValues = subset(predValues, dataType == “Test”)
如果要得到预测概率,则使用extractProb函数
probValues = extractProb(models,testX = testx, testY = testy)
testProbs = subset(probValues, dataType == “Test”)
对于分类问题的效能检验,最重要的是观察预测结果的混淆矩阵
Pred1 = subset(testValues, model == “gbm”)
Pred2 = subset(testValues, model == “treebag”)
confusionMatrix(Pred1$pred, Pred1$obs)
confusionMatrix(Pred2$pred, Pred2$obs)
结果如下,可见第一个模型在准确率要比第二个模型略好一些
Reference
Prediction Active Inactive
Active 65 12
Inactive 9 45
Accuracy : 0.8397
Reference
Prediction Active Inactive
Active 63 12
Inactive 11 45
Accuracy : 0.8244
最后是利用ROCR包来绘制ROC图
prob1 = subset(testProbs, model == “gbm”)
prob2 = subset(testProbs, model == “treebag”)
library(ROCR)
prob1$lable=ifelse(prob1$obs==’Active’,yes=1,0)
pred1 = prediction(prob1$Active,prob1$lable)
perf1 = performance(pred1, measure=”tpr”, x.measure=”fpr” )
plot( perf1 )
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20