分类算法的R语言实现案例
最近在读《R语言与网站分析》,书中对分类、聚类算法的讲解通俗易懂,和数据挖掘理论一起看的话,有很好的参照效果。
然而,这么好的讲解,作者居然没提供对应的数据集。手痒之余,我自己动手整理了一个可用于分类算法的数据集(下载链接:csdn下载频道搜索“R语言与网站分析:数据集样例及分类算法实现”),并用R语言实现了朴素贝叶斯、SVM和人工神经网络分类。
数据集记录的是泰坦尼克号乘客的存活情况。数据集包括乘客的等级(class)、年龄(age)、性别(sex)和存活情况(survive),最终希望通过分析乘客的等级、年龄和性别建立模型,对乘客是否能够存活进行分类。
以下是使用read.table()函数读取的数据集情况,可以看到class的3/4分位数和最大值、age的最小值和1/4分位数以及sex的1/4分位数和中位值分别相等,判断数据集可能已经离散化。
[plain] view plain copy
> data <- read.table("./titanic_s.txt", header = TRUE, sep = ",")
> summary(data)
class age sex survive
Min. :-1.8700000 Min. :-0.228000 Min. :-1.9200000 Min. :-1.0000
1st Qu.:-0.9230000 1st Qu.:-0.228000 1st Qu.: 0.5210000 1st Qu.:-1.0000
Median : 0.0214000 Median :-0.228000 Median : 0.5210000 Median :-1.0000
Mean :-0.0007595 Mean : 0.000202 Mean :-0.0002494 Mean :-0.3539
3rd Qu.: 0.9650000 3rd Qu.:-0.228000 3rd Qu.: 0.5210000 3rd Qu.: 1.0000
Max. : 0.9650000 Max. : 4.380000 Max. : 0.5210000 Max. : 1.0000
将数据全部转换为因子类型。可以看到经过转换后,class有四类(贵族、高、中、低)、age有两类(孩子和成人)、sex有两类(男和女)、survive有两类(存活和未存活)。
[plain] view plain copy
> data$class <- as.factor(data$class)
> data$age <- as.factor(data$age)
> data$sex <- as.factor(data$sex)
> data$survive <- as.factor(data$survive)
> summary(data)
class age sex survive
-1.87 :325 -0.228:2092 -1.92: 470 -1:1490
-0.923:285 4.38 : 109 0.521:1731 1 : 711
0.0214:706
0.965 :885
使用table()函数可查看未存活和存活人数分别为1490人、711人,二者数据量相差较大;如果用这样的数据集建模,可能影响分类结果。
[plain] view plain copy
> table(data$survive)
-1 1
1490 711
为此,对数据量较少的存活人员样本进行重抽样,使得二者的样本数量一致。
[plain] view plain copy
> balance <- function(data,yval) {
+ y.vector <- with(data,get(yval))
+ index.0 <- which(y.vector==-1)
+ index.1 <- which(y.vector==1)
+ index.1 <- sample(index.1, length(index.0), replace = TRUE)
+ result <- data[sample(c(index.0,index.1)),]
+ result
+ }
>
> sdata <- balance(data, "survive")
> table(sdata$survive)
-1 1
1490 1490
将重抽样后的数据分为训练数据集和样本数据集,比例默认按7:3分配。
[plain] view plain copy
> apart.data <- function(data, percent = 0.7) {
+ train.index <- sample(c(1:nrow(data)),round(percent*nrow(data)))
+ data.train <- data[train.index,]
+ data.test <- data[-c(train.index),]
+ result <- list(train = data.train, test = data.test)
+ result
+ }
> p.data <- apart.data(sdata)
> data.train <- p.data$train
> data.test <- p.data$test
数据准备妥当后,可以开始采用不同的分类算法构建模型,并使用测试数据集对模型的分类效果进行评估。要构建的模型是关于存活情况survive与class、age以及sex之间的关系,可用如下公式表示。
[plain] view plain copy
> mod.formula <- as.formula("survive~class+age+sex")</span>
分类算法1:朴素贝叶斯分类,注意要加载e1071库。应用测试数据集对效果进行评估,结果真正率tpr(也就是“预测活着也真活着的人数”/“实际活着的人数”)为57%,真负率tnr(也就是“预测没活也真没活的人数”/“实际没活的人数”)84%。看来预测“没活”的情况比较准。
[plain] view plain copy
> install.packages("e1071")
> library(e1071)
> nb.sol <- naiveBayes(mod.formula, data.train);nb.sol
> nb.predict <- predict(nb.sol, newdata = data.test)
> tb <- table(nb.predict, data.test$survive)
> tpr <- tb[2,2]/(tb[2,2]+tb[1,2]);tpr
[1] 0.5735608
> tnr <- tb[1,1]/(tb[1,1]+tb[2,1]);tnr
[1] 0.8447059
分类算法2:支持向量机(SVM)分类。应用测试数据集对效果进行评估,结果也是真正率tpr较低,真负率tnr较高。
[plain] view plain copy
> svm.sol <- svm(mod.formula, data.train);svm.sol
> svm.predict <- predict(svm.sol, data.test)
> tb <- table(svm.predict, data.test$survive)
> tpr <- tb[2,2]/(tb[2,2]+tb[1,2]);tpr
[1] 0.5095949
> tnr <- tb[1,1]/(tb[1,1]+tb[2,1]);tnr
[1] 0.9152941
分类算法3:人工神经网络(ANN)分类,注意加载nnet包。应用测试数据集对效果进行评估,结果也是真正率tpr较低,真负率tnr较高。
[plain] view plain copy
> library(nnet)
> nnet.sol <- nnet(mod.formula, data.train, size =7, maxit = 1000);nnet.sol
> pred.prob <- predict(nnet.sol, data.test)
> pred.class <- ifelse(pred.prob>0.5, 1,0)
> table(pred.class, data.test$survive)
> tb <- table(pred.class, data.test$survive)
> tpr <- tb[2,2]/(tb[2,2]+tb[1,2]);tpr
[1] 0.5095949
> tnr <- tb[1,1]/(tb[1,1]+tb[2,1]);tnr
[1] 0.9152941
通过对具体的数据集进行数据的重抽样、划分训练数据集和测试数据集,以及最终实施相应的分类算法,可以加深对于R语言分类分析过程和方法的理解。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16