
用R进行多元线性回归分析建模
概念:多元回归分析预测法,是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。
下面我就举几个例子来说明一下
例一:谋杀率与哪些因素有关
变量选择
[plain] view plain copy
states<-as.data.frame(state.x77[,c('Murder','Population','Illiteracy','Income','Frost')])
cor(states)#查看变量相关系数
Murder Population Illiteracy Income Frost
Murder 1.0000000 0.3436428 0.7029752 -0.2300776 -0.5388834
Population 0.3436428 1.0000000 0.1076224 0.2082276 -0.3321525
Illiteracy 0.7029752 0.1076224 1.0000000 -0.4370752 -0.6719470
Income -0.2300776 0.2082276 -0.4370752 1.0000000 0.2262822
Frost -0.5388834 -0.3321525 -0.6719470 0.2262822 1.0000000
我们可以明显的看出谋杀率与人口,文盲率相关性较大
将它们的关系可视化
[plain] view plain copy
library(car)
scatterplotMatrix(states,spread=FALSE)
还可以这么看
[plain] view plain copy
fit<-lm(Murder~Population+Illiteracy+Income+Frost,data = states)
summary(fit)
Call:
lm(formula = Murder ~ Population + Illiteracy + Income + Frost,
data = states)
Residuals:
Min 1Q Median 3Q Max
-4.7960 -1.6495 -0.0811 1.4815 7.6210
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.235e+00 3.866e+00 0.319 0.7510
Population 2.237e-04 9.052e-05 2.471 0.0173 *
Illiteracy 4.143e+00 8.744e-01 4.738 2.19e-05 ***
Income 6.442e-05 6.837e-04 0.094 0.9253
Frost 5.813e-04 1.005e-02 0.058 0.9541
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.535 on 45 degrees of freedom
Multiple R-squared: 0.567, Adjusted R-squared: 0.5285
F-statistic: 14.73 on 4 and 45 DF, p-value: 9.133e-08
还可以这么看
[plain] view plain copy
#install.packages('leaps')
library(leaps)
leaps<-regsubsets(Murder~Population+Illiteracy+Income+Frost,data = states,nbest = 4)
plot(leaps,scale = 'adjr2')
最大值0.55是只包含人口,文盲率这两个变量和截距的。
还可以这样,比较标准回归系数的大小
[plain] view plain copy
zstates<-as.data.frame(scale(states))#scale()标准化
zfit<-lm(Murder~Population+Illiteracy+Income+Frost,data = zstates)
coef(zfit)
(Intercept) Population Illiteracy Income Frost
-2.054026e-16 2.705095e-01 6.840496e-01 1.072372e-02 8.185407e-03
通过这几种方法,我们都可以明显的看出谋杀率与人口,文盲率相关性较大,与其它因素相关性较小。
回归诊断
[plain] view plain copy
> confint(fit)
2.5 % 97.5 %
(Intercept) -6.552191e+00 9.0213182149
Population 4.136397e-05 0.0004059867
Illiteracy 2.381799e+00 5.9038743192
Income -1.312611e-03 0.0014414600
Frost -1.966781e-02 0.0208304170
标记异常值
[plain] view plain copy
qqPlot(fit,labels = row.names(states),id.method = 'identify',simulate = T)
图如下,点一下异常值然后点finish就可以了
查看它的实际值11.5与拟合值3.878958,这条数据显然是异常的,可以抛弃
[plain] view plain copy
> states['Nevada',]
Murder Population Illiteracy Income Frost
Nevada 11.5 590 0.5 5149 188
> fitted(fit)['Nevada']
Nevada
3.878958
> outlierTest(fit)#或直接这么检测离群点
rstudent unadjusted p-value Bonferonni p
Nevada 3.542929 0.00095088 0.047544
car包有多个函数,可以判断误差的独立性,线性,同方差性
[plain] view plain copy
library(car)
durbinWatsonTest(fit)
crPlots(fit)
ncvTest(fit)
spreadLevelPlot(fit)
综合检验
[plain] view plain copy
#install.packages('gvlma')
library(gvlma)
gvmodel<-gvlma(fit);summary(gvmodel)
检验多重共线性
根号下vif>2则表明有多重共线性
[plain] view plain copy
> sqrt(vif(fit))
Population Illiteracy Income Frost
1.115922 1.471682 1.160096 1.443103
都小于2所以不存在多重共线性
例二:女性身高与体重的关系
[plain] view plain copy
attach(women)
plot(height,weight)
通过图我们可以发现,用曲线拟合要比直线效果更好
那就试试呗
[plain] view plain copy
fit<-lm(weight~height+I(height^2))#含平方项
summary(fit)
Call:
lm(formula = weight ~ height + I(height^2))
Residuals:
Min 1Q Median 3Q Max
-0.50941 -0.29611 -0.00941 0.28615 0.59706
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 261.87818 25.19677 10.393 2.36e-07 ***
height -7.34832 0.77769 -9.449 6.58e-07 ***
I(height^2) 0.08306 0.00598 13.891 9.32e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3841 on 12 degrees of freedom
Multiple R-squared: 0.9995, Adjusted R-squared: 0.9994
F-statistic: 1.139e+04 on 2 and 12 DF, p-value: < 2.2e-16
效果是很不错的,可以得出模型为
把拟合曲线加上看看
[plain] view plain copy
lines(height,fitted(fit))
非常不错吧
还可以用car包的scatterplot()函数
[plain] view plain copy
library(car)
scatterplot(weight~height,spread=FALSE,pch=19)#19实心圆,spread=FALSE删除了残差正负均方根在平滑曲线上
展开的非对称信息,听着就不像人话,你可以改成TRUE看看到底是什么,我反正不明白。
例三:含交互项
[plain] view plain copy
<strong>attach(mtcars)
fit<-lm(mpg~hp+wt+hp:wt)
summary(fit)
Call:
lm(formula = mpg ~ hp + wt + hp:wt)
Residuals:
Min 1Q Median 3Q Max
-3.0632 -1.6491 -0.7362 1.4211 4.5513
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.80842 3.60516 13.816 5.01e-14 ***
hp -0.12010 0.02470 -4.863 4.04e-05 ***
wt -8.21662 1.26971 -6.471 5.20e-07 ***
hp:wt 0.02785 0.00742 3.753 0.000811 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.153 on 28 degrees of freedom
Multiple R-squared: 0.8848, Adjusted R-squared: 0.8724
F-statistic: 71.66 on 3 and 28 DF, p-value: 2.981e-13</strong>
其中的hp:wt就是交互项,表示我们假设hp马力与wt重量有相关关系,通过全部的三个星可以看出响应/因变量mpg(每加仑英里)与预测/自变量都相关,也就是说mpg(每加仑英里)与汽车马力/重量都相关,且mpg与马力的关系会根据车重的不同而不同。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14