京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python实现的二叉树算法和kmp算法实例
最近重温数据结构,又用python,所以就用python重新写了数据结构的一些东西,以下是二叉树的python写法
要是:前序遍历、中序遍历、后序遍历、层级遍历、非递归前序遍历、非递归中序遍历、非递归后序遍历
class TreeNode(object):
def __init__(self, data=None, left=None, right=None):
self.data = data
self.left = left
self.right = right
class Tree(object):
def __init__(self, root=None):
self.root = None
def makeTree(self, data, left, right):
self.root = TreeNode(data, left, right)
def is_empty(self):
"""是否为空 """
if self.root is None:
return True
return False
def preOrder(self, r):
"""前序遍历 """
if not r.is_empty():
print r.root.data
if r.root.left is not None:
r.preOrder(r.root.left)
if r.root.right is not None:
r.preOrder(r.root.right)
def inOrder(self, r):
"""中序遍历 """
if not r.is_empty():
if r.root.left is not None:
r.preOrder(r.root.left)
print r.root.data
if r.root.right is not None:
r.preOrder(r.root.right)
def postOrder(self, r):
"""后续遍历 """
if not r.is_empty():
if r.root.left is not None:
r.preOrder(r.root.left)
print r.root.data
if r.root.right is not None:
r.preOrder(r.root.right)
def levelOrder(self, r):
"""层级遍历 """
if not r.is_empty():
s = [r]
while len(s) > 0:
temp = s.pop(0) # 先弹出最先append到的点
if temp and temp.root is not None:
print temp.root.data
if temp.root.left is not None:
s.append(temp.root.left)
if self.root.right is not None:
s.append(temp.root.right)
def preOrder1(self, r):
"""非递归 前序遍历 """
stack = []
current = r
while len(stack) > 0 or (current and not current.is_empty()):
while current and not current.is_empty():
print current.root.data
stack.append(current)
current = current.root.left
if len(stack) > 0:
current = stack.pop()
current = current.root.right
def inOrder1(self, r):
"""非递归 中序遍历 """
stack = []
current = r
while len(stack) > 0 or (current and not current.is_empty()):
while current and not current.is_empty():
stack.append(current)
current = current.root.left
if len(stack) > 0:
current = stack.pop()
print current.root.data
current = current.root.right
def postOrder1(self, r):
"""非递归 后续遍历 """
stack = []
current = r
pre = None
while len(stack) > 0 or (current and not current.is_empty()):
if current and not current.is_empty():
stack.append(current)
current = current.root.left
elif stack[-1].root.right != pre:
current = stack[-1].root.right
pre = None
else:
pre = stack.pop()
print pre.root.data
def leaves_count(self, r):
"""求叶子节点个数 """
if r.is_empty():
return 0
elif (not r.root.left) and (not r.root.right):
return 1
else:
return r.root.left.leaves_count(r.root.left) + r.root.right.leaves_count(r.root.right)
if __name__ == '__main__':
"""二叉树"""
ra, rb, rc, rd, re, rf = Tree(), Tree(), Tree(), Tree(), Tree(), Tree()
ra.makeTree("a", None, None)
rb.makeTree("b", None, None)
rc.makeTree("c", None, None)
rd.makeTree("d", None, None)
re.makeTree("e", None, None)
rf.makeTree("f", None, None)
r1, r2, r3, r4, r = Tree(), Tree(), Tree(), Tree(), Tree()
r1.makeTree("-", rc, rd)
r2.makeTree("*", rb, r1)
r3.makeTree("+", ra, r2)
r4.makeTree("/", re, rf)
r.makeTree("-", r3, r4)
r.preOrder(r)
r.inOrder(r)
r.postOrder(r)
r.levelOrder(r)
print r.leaves_count(r)
大学的时候学过kmp算法,最近在看的时候发现竟然忘了,所以去重新看了看书,然后用python写下了这个算法:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24