R语言提供了另外一个能够处理人工神经网络的算法包nnet,该算法提供了传统的前馈反向传播神经网络算法的实现。
操作
安装包与数据分类:
library(nnet)
data("iris")
set.seed(2)
ind = sample(2,nrow(iris),replace = TRUE,prob = c(0.7,0.3))
trainset = iris[ind == 1,]
testset = iris[ind == 2,]
使用nnet包训练神经网络:
iris.nn = nnet(Species ~ .,data = trainset,size = 2,rang = 0.1,decay = 5e-4,maxit = 200)
# weights: 19
initial value 114.539765
iter 10 value 52.100312
iter 20 value 50.231442
iter 30 value 49.526599
iter 40 value 49.402229
iter 50 value 44.680338
iter 60 value 5.254389
iter 70 value 2.836695
iter 80 value 2.744315
iter 90 value 2.687069
iter 100 value 2.621556
iter 110 value 2.589096
iter 120 value 2.410539
iter 130 value 2.096461
iter 140 value 1.938717
iter 150 value 1.857105
iter 160 value 1.825393
iter 170 value 1.817409
iter 180 value 1.815591
iter 190 value 1.815030
iter 200 value 1.814746
final value 1.814746
stoppedafter 200 iterations
调用summary( )输出训练好的神经网络:
summary(iris.nn)
a 4-2-3 network with 19 weights
options were - softmax modelling decay=5e-04
b->h1 i1->h1 i2->h1 i3->h1 i4->h1
-20.60 0.31 -3.84 3.36 7.72
b->h2 i1->h2 i2->h2 i3->h2 i4->h2
-7.15 1.50 2.49 -4.14 5.59
b->o1 h1->o1 h2->o1
-7.28 -3.67 13.16
b->o2 h1->o2 h2->o2
15.90 -16.64 -19.40
b->o3 h1->o3 h2->o3
-8.62 20.31 6.24
在应用函数时可以实现分类观测,数据源,隐蔽单元个数(size参数),初始随机数权值(rang参数),权值衰减参数(decay参数),最大迭代次数(maxit),整个过程会一直重复直至拟合准则值与衰减项收敛。
使用模型iris.nn模型完成对测试数据集的预测
iris.predict = predict(iris.nn,testset,type = "class")
nn.table = table(testset$Species,iris.predict)
nn.table
iris.predict
setosa versicolor virginica
setosa 17 0 0
versicolor 0 13 1
virginica 0 2 13
基于分类表得到混淆矩阵
confusionMatrix(nn.table)
Confusion Matrix and Statistics
iris.predict
setosa versicolor virginica
setosa 17 0 0
versicolor 0 13 1
virginica 0 2 13
Overall Statistics
Accuracy : 0.9348
95% CI : (0.821, 0.9863)
No Information Rate : 0.3696
P-Value [Acc > NIR] : 1.019e-15
Kappa : 0.9019
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.0000 0.8667 0.9286
Specificity 1.0000 0.9677 0.9375
Pos Pred Value 1.0000 0.9286 0.8667
Neg Pred Value 1.0000 0.9375 0.9677
Prevalence 0.3696 0.3261 0.3043
Detection Rate 0.3696 0.2826 0.2826
Detection Prevalence 0.3696 0.3043 0.3261
Balanced Accuracy 1.0000 0.9172 0.9330
在调用predict函数时,我们明确了type参数为class,因此输出的是预测的类标号而非概率矩阵。接下来调用table函数根据预测结果和testset的实际类标号生成分类表,最后利用建立的分类表使用table函数根据caret中的confusionMatrix方法对训练好的神经网络预测性能评估。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16