
使用R语言进行协整关系检验
协整检验是为了检验非平稳序列的因果关系,协整检验是解决伪回归为问题的重要方法。首先回归伪回归例子:
伪回归Spurious regression 伪回归方程的拟合优度、显著性水平等指标都很好,但是其残差序列是一个非平稳序列,拟合一个伪回归:
#调用相关R包
library(lmtest)
library(tseries)
#模拟序列
set.seed(123456)
e1 = rnorm(500)
e2 = rnorm(500)
trd = 1:500
y1 = 0.8 * trd + cumsum(e1)
y2 = 0.6 * trd + cumsum(e2)
sr.reg = lm(y1 ~ y2)
#提取回归残差
error = residuals(sr.reg)
#作残差散点图
plot(error, main = "Plot of error")
#对残差进行单位根检验
adf.test(error)
## Dickey-Fuller = -2.548, Lag order = 7, p-value = 0.3463
## alternative hypothesis: stationary
#伪回归结果,相关参数都显著
summary(sr.reg)
## Residuals:
## Min 1Q Median 3Q Max
## -30.654 -11.526 0.359 11.142 31.006
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.32697 1.36716 -21.4 <2e-16 ***
## y2 1.44079 0.00752 191.6 <2e-16 ***
## Residual standard error: 13.7 on 498 degrees of freedom
## Multiple R-squared: 0.987, Adjusted R-squared: 0.987
## F-statistic: 3.67e+04 on 1 and 498 DF, p-value: <2e-16
dwtest(sr.reg)
## DW = 0.0172, p-value < 2.2e-16
恩格尔-格兰杰检验Engle-Granger 第一步:建立两变量(y1,y2)的回归方程, 第二部:对该回归方程的残差(resid)进行单位根检验其中,原假设两变量不存在协整关系,备择假设是两变量存在协整关系。利用最小二乘法对回归方程进行估计,从回归方程中提取残差进行检验。
set.seed(123456)
e1 = rnorm(100)
e2 = rnorm(100)
y1 = cumsum(e1)
y2 = 0.6 * y1 + e2
# (伪)回归模型
lr.reg = lm(y2 ~ y1)
error = residuals(lr.reg)
adf.test(error)
## Dickey-Fuller = -3.988, Lag order = 4, p-value = 0.01262
## alternative hypothesis: stationary
error.lagged = error[-c(99, 100)]
# 建立误差修正模型ECM.REG
dy1 = diff(y1)
dy2 = diff(y2)
diff.dat = data.frame(embed(cbind(dy1, dy2), 2)) #emed表示嵌入时间序列dy1,dy2到diff.dat
colnames(diff.dat) = c("dy1", "dy2", "dy1.1", "dy2.1")
ecm.reg = lm(dy2 ~ error.lagged + dy1.1 + dy2.1, data =diff.dat)
summary(ecm.reg)
## Residuals:
## Min 1Q Median 3Q Max
## -2.959 -0.544 0.137 0.711 2.307
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0034 0.1036 0.03 0.97
## error.lagged -0.9688 0.1585 -6.11 2.2e-08 ***
## dy1.1 0.8086 0.1120 7.22 1.4e-10 ***
## dy2.1 -1.0589 0.1084 -9.77 5.6e-16 ***
## Residual standard error: 1.03 on 94 degrees of freedom
## Multiple R-squared: 0.546, Adjusted R-squared: 0.532
## F-statistic: 37.7 on 3 and 94 DF, p-value: 4.24e-16
par(mfrow = c(2, 2))
plot(ecm.reg)
Johansen-Juselius(JJ)协整检验法,该方法是一种用向量自回归(VAR)模型进行检验的方法,适用于对多重一阶单整I(1)序列进行协整检验。JJ检验有两种:特征值轨迹检验和最大特征值检验。我们可以调用urca包中的ca.jo命令完成这两种检验。其语法:
ca.jo(x, type = c("eigen", "trace"), ecdet = c("none", "const", "trend"), K = 2,spec=c("longrun", "transitory"), season = NULL, dumvar = NULL)
其中:x为矩阵形式数据框;type用来设置检验方法;ecdet用于设置模型形式:none表示不带截距项,const表示带常数截距项,trend表示带趋势项。K表示自回归序列的滞后阶数;spec表示向量误差修正模型反映的序列间的长期或短期关系;season表示季节效应;dumvar表示哑变量设置。
set.seed(12345)
e1=rnorm(250,0,0.5)
e2=rnorm(250,0,0.5)
e3=rnorm(250,0,0.5)
#模拟没有移动平均的向量自回归序列;
u1.ar1=arima.sim(model=list(ar=0.75), innov=e1, n=250)
u2.ar1=arima.sim(model=list(ar=0.3), innov=e2, n=250)
y3=cumsum(e3)
y1=0.8*y3+u1.ar1
y2=-0.3*y3+u2.ar1
#合并y1,y2,y3构成进行JJ检验的数据库;
y.mat=data.frame(y1, y2, y3)
#调用urca包中cajo命令对向量自回归序列进行JJ协整检验
vecm=ca.jo(y.mat)
jo.results=summary(vecm)#cajorls命令可以得到限制协整阶数的向量误差修正模型的最小二乘法回归结果
vecm.r2=cajorls(vecm, r=2);vecm.r2
## Call:lm(formula = substitute(form1), data = data.mat)
## Coefficients:
## y1.d y2.d y3.d
## ect1 -0.33129 0.06461 0.01268
## ect2 0.09447 -0.70938 -0.00916
## constant 0.16837 -0.02702 0.02526
## y1.dl1 -0.22768 0.02701 0.06816
## y2.dl1 0.14445 -0.71561 0.04049
## y3.dl1 0.12347 -0.29083 -0.07525
## $beta
## ect1 ect2
## y1.l2 1.000e+00 0.0000
## y2.l2 -3.402e-18 1.0000
## y3.l2 -7.329e-01 0.2952
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25