使用R语言进行协整关系检验
协整检验是为了检验非平稳序列的因果关系,协整检验是解决伪回归为问题的重要方法。首先回归伪回归例子:
伪回归Spurious regression 伪回归方程的拟合优度、显著性水平等指标都很好,但是其残差序列是一个非平稳序列,拟合一个伪回归:
#调用相关R包
library(lmtest)
library(tseries)
#模拟序列
set.seed(123456)
e1 = rnorm(500)
e2 = rnorm(500)
trd = 1:500
y1 = 0.8 * trd + cumsum(e1)
y2 = 0.6 * trd + cumsum(e2)
sr.reg = lm(y1 ~ y2)
#提取回归残差
error = residuals(sr.reg)
#作残差散点图
plot(error, main = "Plot of error")
#对残差进行单位根检验
adf.test(error)
## Dickey-Fuller = -2.548, Lag order = 7, p-value = 0.3463
## alternative hypothesis: stationary
#伪回归结果,相关参数都显著
summary(sr.reg)
## Residuals:
## Min 1Q Median 3Q Max
## -30.654 -11.526 0.359 11.142 31.006
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.32697 1.36716 -21.4 <2e-16 ***
## y2 1.44079 0.00752 191.6 <2e-16 ***
## Residual standard error: 13.7 on 498 degrees of freedom
## Multiple R-squared: 0.987, Adjusted R-squared: 0.987
## F-statistic: 3.67e+04 on 1 and 498 DF, p-value: <2e-16
dwtest(sr.reg)
## DW = 0.0172, p-value < 2.2e-16
恩格尔-格兰杰检验Engle-Granger 第一步:建立两变量(y1,y2)的回归方程, 第二部:对该回归方程的残差(resid)进行单位根检验其中,原假设两变量不存在协整关系,备择假设是两变量存在协整关系。利用最小二乘法对回归方程进行估计,从回归方程中提取残差进行检验。
set.seed(123456)
e1 = rnorm(100)
e2 = rnorm(100)
y1 = cumsum(e1)
y2 = 0.6 * y1 + e2
# (伪)回归模型
lr.reg = lm(y2 ~ y1)
error = residuals(lr.reg)
adf.test(error)
## Dickey-Fuller = -3.988, Lag order = 4, p-value = 0.01262
## alternative hypothesis: stationary
error.lagged = error[-c(99, 100)]
# 建立误差修正模型ECM.REG
dy1 = diff(y1)
dy2 = diff(y2)
diff.dat = data.frame(embed(cbind(dy1, dy2), 2)) #emed表示嵌入时间序列dy1,dy2到diff.dat
colnames(diff.dat) = c("dy1", "dy2", "dy1.1", "dy2.1")
ecm.reg = lm(dy2 ~ error.lagged + dy1.1 + dy2.1, data =diff.dat)
summary(ecm.reg)
## Residuals:
## Min 1Q Median 3Q Max
## -2.959 -0.544 0.137 0.711 2.307
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0034 0.1036 0.03 0.97
## error.lagged -0.9688 0.1585 -6.11 2.2e-08 ***
## dy1.1 0.8086 0.1120 7.22 1.4e-10 ***
## dy2.1 -1.0589 0.1084 -9.77 5.6e-16 ***
## Residual standard error: 1.03 on 94 degrees of freedom
## Multiple R-squared: 0.546, Adjusted R-squared: 0.532
## F-statistic: 37.7 on 3 and 94 DF, p-value: 4.24e-16
par(mfrow = c(2, 2))
plot(ecm.reg)
Johansen-Juselius(JJ)协整检验法,该方法是一种用向量自回归(VAR)模型进行检验的方法,适用于对多重一阶单整I(1)序列进行协整检验。JJ检验有两种:特征值轨迹检验和最大特征值检验。我们可以调用urca包中的ca.jo命令完成这两种检验。其语法:
ca.jo(x, type = c("eigen", "trace"), ecdet = c("none", "const", "trend"), K = 2,spec=c("longrun", "transitory"), season = NULL, dumvar = NULL)
其中:x为矩阵形式数据框;type用来设置检验方法;ecdet用于设置模型形式:none表示不带截距项,const表示带常数截距项,trend表示带趋势项。K表示自回归序列的滞后阶数;spec表示向量误差修正模型反映的序列间的长期或短期关系;season表示季节效应;dumvar表示哑变量设置。
set.seed(12345)
e1=rnorm(250,0,0.5)
e2=rnorm(250,0,0.5)
e3=rnorm(250,0,0.5)
#模拟没有移动平均的向量自回归序列;
u1.ar1=arima.sim(model=list(ar=0.75), innov=e1, n=250)
u2.ar1=arima.sim(model=list(ar=0.3), innov=e2, n=250)
y3=cumsum(e3)
y1=0.8*y3+u1.ar1
y2=-0.3*y3+u2.ar1
#合并y1,y2,y3构成进行JJ检验的数据库;
y.mat=data.frame(y1, y2, y3)
#调用urca包中cajo命令对向量自回归序列进行JJ协整检验
vecm=ca.jo(y.mat)
jo.results=summary(vecm)#cajorls命令可以得到限制协整阶数的向量误差修正模型的最小二乘法回归结果
vecm.r2=cajorls(vecm, r=2);vecm.r2
## Call:lm(formula = substitute(form1), data = data.mat)
## Coefficients:
## y1.d y2.d y3.d
## ect1 -0.33129 0.06461 0.01268
## ect2 0.09447 -0.70938 -0.00916
## constant 0.16837 -0.02702 0.02526
## y1.dl1 -0.22768 0.02701 0.06816
## y2.dl1 0.14445 -0.71561 0.04049
## y3.dl1 0.12347 -0.29083 -0.07525
## $beta
## ect1 ect2
## y1.l2 1.000e+00 0.0000
## y2.l2 -3.402e-18 1.0000
## y3.l2 -7.329e-01 0.2952
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16