机器学习中分类与聚类的本质区别
机器学习中有两类的大问题,一个是分类,一个是聚类。
在我们的生活中,我们常常没有过多的去区分这两个概念,觉得聚类就是分类,分类也差不多就是聚类,下面,我们就具体来研究下分类与聚类之间在数据挖掘中本质的区别。
分类
分类有如下几种说法,但表达的意思是相同的。
分类(classification):分类任务就是通过学习得到一个目标函数f,把每个属性集x映射到一个预先定义的类标号y中。
分类是根据一些给定的已知类别标号的样本,训练某种学习机器(即得到某种目标函数),使它能够对未知类别的样本进行分类。这属于supervised learning(监督学习)。
分类:通过学习来得到样本属性与类标号之间的关系。
用自己的话来说,就是我们根据已知的一些样本(包括属性与类标号)来得到分类模型(即得到样本属性与类标号之间的函数),然后通过此目标函数来对只包含属性的样本数据进行分类。
分类算法的局限
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
聚类
聚类的相关的一些概念如下
而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,这在机器学习中被称作 unsupervised learning (无监督学习)
通常,人们根据样本间的某种距离或者相似性来定义聚类,即把相似的(或距离近的)样本聚为同一类,而把不相似的(或距离远的)样本归在其他类。
聚类的目标:组内的对象相互之间时相似的(相关的),而不同组中的对象是不同的(不相关的)。组内的相似性越大,组间差别越大,聚类就越好。
分类与聚类的比较
聚类分析是研究如何在没有训练的条件下把样本划分为若干类。
在分类中,对于目标数据库中存在哪些类是知道的,要做的就是将每一条记录分别属于哪一类标记出来。
聚类需要解决的问题是将已给定的若干无标记的模式聚集起来使之成为有意义的聚类,聚类是在预先不知道目标数据库到底有多少类的情况下,希望将所有的记录组成不同的类或者说聚类,并且使得在这种分类情况下,以某种度量(例如:距离)为标准的相似性,在同一聚类之间最小化,而在不同聚类之间最大化。
与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据样本有类别标记。
要说明内容
因为最近在研究者两种算法,也就刚好用来说一下分类和聚类不同的算法。
SVM与二分K均值算法的区别之一:支持向量机(SVM)是一种分类算法,二分k均值算法属于一种聚类算法。
在《数据挖掘导论(完整版)》这本书第306页中有这样一句话:聚类可以看做一种分类,它用类标号创建对象的标记,然而只能从数据导出这些标号。相比之下,前面所说的分类是监督分类(supervised classification):即使用有类标号已知的对象开发的模型,对新的、无标记的对象赋予类标号。为此,有时称聚类分析为非监督分类(unsupervised classification)。在数据挖掘中,不附加任何条件使用术语分类时,通常是指监督分类。
因此,SVM与二分K均值算法的区别之一:支持向量机(SVM)是一种监督分类算法,二分k均值算法属于一种非监督分类算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31