R语言聚类算法比较
在使用不同的聚类算法完成数据聚类操作后,我们可以对算法的性能进行评估,绝大多数情况下,我们即可以使用簇内距离也可以使用簇间距离作为评价标准。使用fpc算法包的cluster.stat函数来比较不同的聚类算法。
操作
导入fpc包,选择层次聚类算法,距离计算采用single方法(最短距离法),将得到簇存放在hc_single中:
library(fpc)
single_c = hclust(dist(customer),method = "single")
hc_single = cutree(single_c,k = 4)
选择层次聚类算法,距离计算采用complete方法(最长距离法),将得到的簇存放在hc_complete:
complete_c = hclust(dist(customer),method = "complete")
hc_complte = cutree(complete_c,k = 4)
选择k均值聚类算法,将得到的簇存放km对象中:
set.seed(22)
km = kmeans(customer,4)
获得km聚类算法聚类结果的基本统计信息:
cs = cluster.stats(dist(customer),km$cluster)
通常我们习惯使用within.cluster.ss和avg.silwidth这两个函数来验证聚类算法:
cs[c("within.cluster.ss","avg.silwidth")]
$within.cluster.ss
[1] 61.3489
$avg.silwidth
[1] 0.4640587
将得到的不同方法生成聚类结果的统计信息并以列表显示:
sapply(list(kmeans = km$cluster,hc_single = hc_single,hc_complte = hc_complte), function(c)cluster.stats(dist(customer),c)[c("within.cluster.ss","avg.silwidth")])
kmeans hc_single hc_complte
within.cluster.ss 61.3489 136.0092 65.94076
avg.silwidth 0.4640587 0.2481926 0.4255961
原理
聚类结果的验证通常采用两种技术:簇内距离和簇间距离。其中,簇间距离距离越大,聚类效果越好,而簇内距离越小,聚类效果越理想。使用fpc包中的cluster.stat函数来计算训练好的聚类对象的相关统计信息。
从输出结果可以得知,within.cluster.ss计算的是每个聚类内部的距离平方程,而avg.silwidth计算的是平均轮廓值。within.cluster.ss的计算结果体现了同一个簇之间对象的相关程度,该值越小,簇内对象的相关性越大。而avg.silwidth值则同时考虑了簇内对象的聚合度和簇内对象的聚合度簇间对象的分离度。数学上对于每个点x可以采用下列公式计算其轮廓系数:
轮廓系数(x) = [b(x) - a(x)]/max([b(x),a(x)])
其中,a(x)是点x到所有与它在同一簇中的其他点的平均距离,而b(x)则是点x到所有与它不在同一簇的点平均距离的最小值。通常轮廓系数取值范围为0~1,越接近于1说明聚类效果越好。
从最后产生的结果可以知道,在within.cluster.ss和avg.silwidth测量长度下基于最长距离的层次聚类算法的聚类效果要优于最短距离层次聚类算法和k均值算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31