京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言聚类算法比较
在使用不同的聚类算法完成数据聚类操作后,我们可以对算法的性能进行评估,绝大多数情况下,我们即可以使用簇内距离也可以使用簇间距离作为评价标准。使用fpc算法包的cluster.stat函数来比较不同的聚类算法。
操作
导入fpc包,选择层次聚类算法,距离计算采用single方法(最短距离法),将得到簇存放在hc_single中:
library(fpc)
single_c = hclust(dist(customer),method = "single")
hc_single = cutree(single_c,k = 4)
选择层次聚类算法,距离计算采用complete方法(最长距离法),将得到的簇存放在hc_complete:
complete_c = hclust(dist(customer),method = "complete")
hc_complte = cutree(complete_c,k = 4)
选择k均值聚类算法,将得到的簇存放km对象中:
set.seed(22)
km = kmeans(customer,4)
获得km聚类算法聚类结果的基本统计信息:
cs = cluster.stats(dist(customer),km$cluster)
通常我们习惯使用within.cluster.ss和avg.silwidth这两个函数来验证聚类算法:
cs[c("within.cluster.ss","avg.silwidth")]
$within.cluster.ss
[1] 61.3489
$avg.silwidth
[1] 0.4640587
将得到的不同方法生成聚类结果的统计信息并以列表显示:
sapply(list(kmeans = km$cluster,hc_single = hc_single,hc_complte = hc_complte), function(c)cluster.stats(dist(customer),c)[c("within.cluster.ss","avg.silwidth")])
kmeans hc_single hc_complte
within.cluster.ss 61.3489 136.0092 65.94076
avg.silwidth 0.4640587 0.2481926 0.4255961
原理
聚类结果的验证通常采用两种技术:簇内距离和簇间距离。其中,簇间距离距离越大,聚类效果越好,而簇内距离越小,聚类效果越理想。使用fpc包中的cluster.stat函数来计算训练好的聚类对象的相关统计信息。
从输出结果可以得知,within.cluster.ss计算的是每个聚类内部的距离平方程,而avg.silwidth计算的是平均轮廓值。within.cluster.ss的计算结果体现了同一个簇之间对象的相关程度,该值越小,簇内对象的相关性越大。而avg.silwidth值则同时考虑了簇内对象的聚合度和簇内对象的聚合度簇间对象的分离度。数学上对于每个点x可以采用下列公式计算其轮廓系数:
轮廓系数(x) = [b(x) - a(x)]/max([b(x),a(x)])
其中,a(x)是点x到所有与它在同一簇中的其他点的平均距离,而b(x)则是点x到所有与它不在同一簇的点平均距离的最小值。通常轮廓系数取值范围为0~1,越接近于1说明聚类效果越好。
从最后产生的结果可以知道,在within.cluster.ss和avg.silwidth测量长度下基于最长距离的层次聚类算法的聚类效果要优于最短距离层次聚类算法和k均值算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12