商务智能项目实施前期工作步骤
商务智能的定义:商务智能是从数据到信息,从信息到知识,再从知识到决策,然后从决策到行动。商务智能分为战略智能和运营智能两大类。战略智能是相对于集团公司如何有效制定、跟踪企业战略的智能分析和决策;而运营智能是相对于公司日常如何有效运营的智能执行和监控。
商务智能按照角色应用设计的流程:公司董事会主动研究出现了什么问题或者寻找下一步的机会,然后交给分析师或者管理层进行诊断、研究和分析,什么原因导致了问题的出现,再通过假设分析,实现投资的分布和回报率,或者下一步活动(比如营销战役)的机会和可行性,寻找最佳方案,定义优先级,选择活动的内容,然后提交给决策者,由决策者通过执行方案,由管理层具体制定活动实施方案,度量标准和监控的方案,发送给相关部门或者外部的合作伙伴(比如供应商)执行,对于执行的结果,通过关键绩效指标,了解执行的进度和问题,再进行方案调节。
商务智能项目实施前期应做的工作步骤:
第一步、选定主题和应用角色:商务智能首先要明确定义一个主题、应用的部门,应该按照角色设计应该。最先选定的主题最好是数据相对完整,数据质量相对较好的主题。企业要做到战略智能到运营智能的战略目标、战术目标和战斗目标的一致性,要保证商务智能是按照角色划分的,不同的角色需要不同的内容和展现形式:
(1)、企业的战略层需要企业绩效管理驾驶舱,确保战略的制定和有效执行的策划,他们时刻要了解公司的关键绩效指标达标现状和存在的问题,对关键绩效指标的预警;
(2)、管理层需要报表、预警、查询和分析,将企业的战略转换为业务部门的战术,时刻监控部门绩效、了解差异、同比环比、解决问题或者提供选择方案;
(3)、分析层需要利用工具对业务进行分析和跟踪,按照高层的指意,对企业的运营提出建议;
(4)、执行层需要了解具体执行的情况,了解自己所完成任务的状况。
第二步、用户需求分析:当主题拟定之后,比如财务分析主题,主要使用部门是财务部门,然后要尽量做到短平快,抓住主题和主要解决的问题,尽快在3个月或者半年实现目标,而不要追求大而全,选择尽量的完美其结果不但使得项目的周期加长,而且还使得项目的重点淡化,主题不突出了。
在部门或者角色应用时,一般会设计到固定报表、关键绩效指标(KPI)指标预警、即席查询、例外分析和数据挖掘(预测、深层次的分析)五个方面的应用展现。但是在项目的初期,最好包括报表、KPI指标、例外分析和即席查询。
(1)、制定KPI指标:这里首先介绍如何制定KPI指标,对于相关部门的不同人员,从部门的所有相关的绩效指标中选出关键绩效指标(KPI),这样的指标最好不超过8个,关键绩效指标应该由其他的指标运算而得到,比如企业的关键绩效指标是成长性、安全性、流动性、生产性和收益性,而关键绩效指标收益性由销售利润率、资金利润率和流动资金利润率组成。对于选定的KPI,需要设计门槛值,当超出门槛值时,可以自动用红绿灯仪表盘发出预警,或者发短信告诉相关管理者,管理着可以通过移动商务智能来跟踪指标和查询发生的原因。
(2)、设计固定报表:对于固定报表,特别是常用的报表,最好事先预制计算保存,比如晚上12点到早晨7点之前自动计算保存。对不同角色有不通需要的固定报表,将用户最常用的报表列在最容易获得的位置。
(3)、查询接口:对于需要查询的指标或者问题,一定需要工具或者设计的各个可选下拉菜单模式进行查询。
(4)、例外分析:可以对给定的指标,通过红绿灯、仪表盘、温度计、KPI指标超门槛值进行预警,然后可以进行例外钻去和分析。
(5)、数据挖掘:数据挖掘应该适合于分析师和一些专家或者高级应用者。
第三步、数据模型设计:有了用户需求,下一步就需要设计相应数据集市的数据模型以及采取的技术方案,利用“想大做小”的原则,对于本次要实现的KPI和报表,考虑其计算的方法和定义,考虑相关指标的基础数据源,是否所有的数据都存在,数据的完整性、准确性、唯一性,对于缺少的数据如何获取,需要多大的成本。接下来要考虑如何利用ETL工具,数据质量控制工具以及元数据管理工具,来确保可以按时、按预算实现设计的目标吗?当然角色不同,数据的颗粒度也就不同,级别越高,数据的颗粒度就越大,战略层最好是统计汇总数据,但是他们要看到的面更广。
第四步、用户界面的设计:有了相关的指标和应用,就要确定各个角色用户界面的设计,对于战略层他们喜欢仪表盘、红绿灯的指标预警、电子地图、雷达图、杜邦分析法、趋势和走向结果展现;而管理层需要部门指标预警、固定报表、例外分析和假设分析,最好利用趋势图、即席查询、电子地图和OLAP分析,对于执行层面最好是一些固定的运营报表、和详细运营报表查询、与自己工作相关的例外分析。将这些界面以及二级、三级界面和用户进行沟通,听取意见,确定界面。界面需要具有逻辑性,点击最好不要超过三键。
准确获得高层的需求:对于商务智能需求的调研,特别是对高层决策者的调研,一定选一个有过高层管理经验,在业界有一定名望,而且决策层也非常认可的专家进行调研,事先将调研提纲发给调研人员,调研时要做到尽量多问少说,了解老总的真正想法,关心那些问题,那些指标等,最好带上录音笔,将老总关心的问题记录下来,等老总讲完了,再抛砖引玉将其他的行业或者类似的企业是如何做的展现给老总,然后问老总是否也对其他相关的应用感兴趣。这样就可以尽量减少以后的修改。为什么要让大家认可的专家调研决策层?主要是其他开发人员一般缺少管理经验,所以调研的问题和老板的想法不一定对口,或者无法了解老总的意图和想法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30