商务智能项目实施前期工作步骤
商务智能的定义:商务智能是从数据到信息,从信息到知识,再从知识到决策,然后从决策到行动。商务智能分为战略智能和运营智能两大类。战略智能是相对于集团公司如何有效制定、跟踪企业战略的智能分析和决策;而运营智能是相对于公司日常如何有效运营的智能执行和监控。
商务智能按照角色应用设计的流程:公司董事会主动研究出现了什么问题或者寻找下一步的机会,然后交给分析师或者管理层进行诊断、研究和分析,什么原因导致了问题的出现,再通过假设分析,实现投资的分布和回报率,或者下一步活动(比如营销战役)的机会和可行性,寻找最佳方案,定义优先级,选择活动的内容,然后提交给决策者,由决策者通过执行方案,由管理层具体制定活动实施方案,度量标准和监控的方案,发送给相关部门或者外部的合作伙伴(比如供应商)执行,对于执行的结果,通过关键绩效指标,了解执行的进度和问题,再进行方案调节。
商务智能项目实施前期应做的工作步骤:
第一步、选定主题和应用角色:商务智能首先要明确定义一个主题、应用的部门,应该按照角色设计应该。最先选定的主题最好是数据相对完整,数据质量相对较好的主题。企业要做到战略智能到运营智能的战略目标、战术目标和战斗目标的一致性,要保证商务智能是按照角色划分的,不同的角色需要不同的内容和展现形式:
(1)、企业的战略层需要企业绩效管理驾驶舱,确保战略的制定和有效执行的策划,他们时刻要了解公司的关键绩效指标达标现状和存在的问题,对关键绩效指标的预警;
(2)、管理层需要报表、预警、查询和分析,将企业的战略转换为业务部门的战术,时刻监控部门绩效、了解差异、同比环比、解决问题或者提供选择方案;
(3)、分析层需要利用工具对业务进行分析和跟踪,按照高层的指意,对企业的运营提出建议;
(4)、执行层需要了解具体执行的情况,了解自己所完成任务的状况。
第二步、用户需求分析:当主题拟定之后,比如财务分析主题,主要使用部门是财务部门,然后要尽量做到短平快,抓住主题和主要解决的问题,尽快在3个月或者半年实现目标,而不要追求大而全,选择尽量的完美其结果不但使得项目的周期加长,而且还使得项目的重点淡化,主题不突出了。
在部门或者角色应用时,一般会设计到固定报表、关键绩效指标(KPI)指标预警、即席查询、例外分析和数据挖掘(预测、深层次的分析)五个方面的应用展现。但是在项目的初期,最好包括报表、KPI指标、例外分析和即席查询。
(1)、制定KPI指标:这里首先介绍如何制定KPI指标,对于相关部门的不同人员,从部门的所有相关的绩效指标中选出关键绩效指标(KPI),这样的指标最好不超过8个,关键绩效指标应该由其他的指标运算而得到,比如企业的关键绩效指标是成长性、安全性、流动性、生产性和收益性,而关键绩效指标收益性由销售利润率、资金利润率和流动资金利润率组成。对于选定的KPI,需要设计门槛值,当超出门槛值时,可以自动用红绿灯仪表盘发出预警,或者发短信告诉相关管理者,管理着可以通过移动商务智能来跟踪指标和查询发生的原因。
(2)、设计固定报表:对于固定报表,特别是常用的报表,最好事先预制计算保存,比如晚上12点到早晨7点之前自动计算保存。对不同角色有不通需要的固定报表,将用户最常用的报表列在最容易获得的位置。
(3)、查询接口:对于需要查询的指标或者问题,一定需要工具或者设计的各个可选下拉菜单模式进行查询。
(4)、例外分析:可以对给定的指标,通过红绿灯、仪表盘、温度计、KPI指标超门槛值进行预警,然后可以进行例外钻去和分析。
(5)、数据挖掘:数据挖掘应该适合于分析师和一些专家或者高级应用者。
第三步、数据模型设计:有了用户需求,下一步就需要设计相应数据集市的数据模型以及采取的技术方案,利用“想大做小”的原则,对于本次要实现的KPI和报表,考虑其计算的方法和定义,考虑相关指标的基础数据源,是否所有的数据都存在,数据的完整性、准确性、唯一性,对于缺少的数据如何获取,需要多大的成本。接下来要考虑如何利用ETL工具,数据质量控制工具以及元数据管理工具,来确保可以按时、按预算实现设计的目标吗?当然角色不同,数据的颗粒度也就不同,级别越高,数据的颗粒度就越大,战略层最好是统计汇总数据,但是他们要看到的面更广。
第四步、用户界面的设计:有了相关的指标和应用,就要确定各个角色用户界面的设计,对于战略层他们喜欢仪表盘、红绿灯的指标预警、电子地图、雷达图、杜邦分析法、趋势和走向结果展现;而管理层需要部门指标预警、固定报表、例外分析和假设分析,最好利用趋势图、即席查询、电子地图和OLAP分析,对于执行层面最好是一些固定的运营报表、和详细运营报表查询、与自己工作相关的例外分析。将这些界面以及二级、三级界面和用户进行沟通,听取意见,确定界面。界面需要具有逻辑性,点击最好不要超过三键。
准确获得高层的需求:对于商务智能需求的调研,特别是对高层决策者的调研,一定选一个有过高层管理经验,在业界有一定名望,而且决策层也非常认可的专家进行调研,事先将调研提纲发给调研人员,调研时要做到尽量多问少说,了解老总的真正想法,关心那些问题,那些指标等,最好带上录音笔,将老总关心的问题记录下来,等老总讲完了,再抛砖引玉将其他的行业或者类似的企业是如何做的展现给老总,然后问老总是否也对其他相关的应用感兴趣。这样就可以尽量减少以后的修改。为什么要让大家认可的专家调研决策层?主要是其他开发人员一般缺少管理经验,所以调研的问题和老板的想法不一定对口,或者无法了解老总的意图和想法。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16