商业分析是概念,也不仅是概念
在厂商、咨询公司、系统集成商、媒体、客户、研究机构等共同营造的BI生态中,利益永远是第一位的,适时地进行“整顿”,对任何行业都是必需的,对基础性的概念也是如此。
SAS认为:BA是建立在BI基础之上的高端分析拓展,与传统BI偏重于业务结果的呈现不同,BA更偏重于业务流程中的分析,借助预测性分析为管理者和员工团队提供具有指导性意义的有效信息,帮助企业更好地完成分析和决策,全面提高企业的绩效。
对于“BA是建立在BI基础之上”,从原理上来讲,大可不必:即使没有BI基础,或者说没有数据仓库,只要有相对完备的数据,就可以进行业务分析。但从实际应用来讲,如果没有海量的数据支撑,没有数据仓库以及其后所隐藏的企业数据管理链条作为支撑,那么任何的分析和研究项目都无法在系统性、全面性和战略性等方面得到保障。
同时,我们也看到,BA与BI还是有比较明显的区隔:BI更偏向水平的技术和业务平台,而BA更偏垂直业务应用(例如面向行业的业务问题)。从这个角度来看,BA更能帮助企业解决实质业务问题,也能更好地发挥BI的商业价值。
针对零售业的商业分析,我们可以从下图中的一些业务主题入手,来帮助企业解决业务问题并提供切实的商业策略。
图1 新华信零售业商业决策解决方案
[page] 同时,针对这些业务主体的分析和研究,甚至建立商业模型,是零售企业的经营决策所必须要逾越的一个阶段;特别是在阴晴不定且瞬息万变的市场上,针对某些特定主题的快速市场响应,是每个希望做大做强的零售企业家都在思索的核心问题。
零售业在商业智能和商业分析中进行抉择
那么,在商业智能和商业分析中,企业(尤其是零售企业)究竟应该如何抉择呢?
首先应该看企业的发展阶段:按照一些人的说法“很多中国企业都在莫名其妙中长大”,这种原始性、自发性和不确定性的成长,势必为系统性、目的性和确定性所代替。对于中型企业来讲,企业或者活在产业链条的某个节点,或者靠新鲜的商业理念得以迅速成长,企业产品和服务的“大规模快速复制”是中型企业成长为大型甚至巨型企业所必经的阶段。在这个阶段,普遍来讲,中型企业更应该解决的问题是业务的规范化和体系化问题,并系统地规划下一步的走向,此时商业智能的水平性特质将会逐步显现,也会在更大程度上契合企业的发展脉络(这也是为什么诸多BI厂商开始推出中小企业普及版的原因之一);同时,中型企业采用商业分析来为企业解决特定的业务问题,也是一个不错的选择,甚至会成为企业今后实现个性化和差异化经营打下良好的基础。对于大型甚至巨型企业而言,往往已经建立了自己的BI体系,而针对某些特定业务主题的分析、建模和预测甚至决策引擎,将会在瞬间为企业带来巨大的绩效提升或者成本削减,大型和巨型企业更多地基于BI体系从事BA的业务,是已然也是必然。
其次应该看重企业的实际业务需求,很多的业务分析和业务模型并不是靠BI或者BA就可以单独解决的:零售业是典型的资金流转型行业,日常经营中的财务分析和企业快速扩张所必需的投融资分析,都具有很强的行业和应用主题特色,例如企业就必须对杜邦分析、沃尔分析或者现金流预测分析乃至投资回报分析等模型进行适应本行业特别是本企业的改造。在这个方面,企业最缺乏的不是BI或BA专家,而是基于行业的应用专家;虽然操作型BI可以部分解决这些问题,但是在实际的分析和研究过程中,需要行业专家、应用专家、数据专家、分析专家和技术专家等一干人等来合力解决这些问题,而不必去刻意去划分BI或者BA(事实上有时也无法划分)。
还有一个要命的问题需要解决:任何的分析项目,都离不开基础数据的支持,万法归宗,皆是数据。对于处于发展阶段的中小零售企业,首先是考虑自身的数据收集和管理能力,或者去系统性地逐步建立这种能力;而对于存在大量数据甚者数据迷雾的零售业企业,数据的高速增长也往往带来数据管理问题的几何级增长。简单地保留POS机数据、进货数据等是基础,而对业务分析至关重要的客户数据、营销数据、消费数据和服务数据中,哪些数据、什么粒度的数据应该通过什么方法进行收集和存储,是企业必须要考虑的问题。企业的数据能力,会决定企业的BI和BA能力;同时,企业的BI和BA需求,也会反过来逼迫企业数据能力的提升。
最后提一点,鉴于小型的BA项目更易操作实施并评估成效,建议某些还站在BI和BA两座山头前逡巡不前的零售业企业,以小型BA项目为契机,评估商业决策为企业带来的价值,同时“拉动内需”,为企业后期的规模化BI或BA实施打下良好的基础。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20