京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1 决策树算法(Decision Tree)是从训练数据集中归纳出一组分类规则的过程。
实际操作中,与训练数据集不相矛盾的决策树可能有多个,也可能一个都没有;理想情况是找到一个与训练数据矛盾较小的决策树,同时也具有良好的泛化能力。
2 决策树结构:
有向边
节点
-内部节点: 数据的特征
-叶节点:数据的类别
决策树准则:每个实例都被一条路径覆盖,且仅被一条路径覆盖
3 决策树算法过程
特征选择
决策树生成过程就是划分数据集的过程,合适地选取特征能帮助我们将数据集从无序数据组织为有序;
有很多方法可以划分数据集,决策树算法根据信息论来度量信息;
信息论中有很多概念,不同的决策树生成算法使用不同的信息论概念来进行特征选择。
决策树生成
有诸如ID3, C4.5, CART等算法用于生成决策树;
ID3和CART4.5的差别在于用于特征选择的度量的不同
-ID3使用信息增益进行特征选择
-C4.5使用信息增益比进行特征选择
-以上两个算法流程:迭代的寻找当前特征中最好的特征进行数据划分,直到所有特征用尽或者划分后的数据的熵足够小。
ID3核心思想:信息增益越大说明该特征对于减少样本的不确定性程度的能力越大,也就代表这个特征越好。
C4.5核心思想:某些情况(比如按照身份证号、信用卡号、学号对数据进行分类)构造的树层数太浅而分支又太多,而这样的情况对数据的分类又往往没有意义,所以引入信息增益比来对分支过多的情况进行适当“惩罚”。具体情景解释可见这篇博客
CART我还没了解过,暂不介绍
4 决策树生成算法得到的树对训练数据的分类很准确,但对未知数据的分类却没那么准确,容易过拟合;因为决策树考虑的特征太多,构建得太复杂。
所以我们需要对决策树进行剪枝:从已生成的树上裁掉一些子树或叶节点,并将其根节点或父节点作为新的叶节点,以此简化树。
剪枝算法很多,这里引入一种简单的:极小化决策树整体的损失函数。
设树 T 的叶节点个数为 |T|, t 是树 T 的叶节点,该叶节点有Nt
个样本点,其中 k 类的样本点有Ntk个, k = 1,2,…,k, Ht(T)是叶节点 t 上的经验熵,α≥0
为参数,决策树的损失函数可定义如下

而经验熵为

其中,为了简洁,令

所以,上面的损失函数可以记为
各个符号定义如下:
C(T) 表示模型对训练数据的预测误差,即拟合程度
|T| 表示模型复杂度
α
控制以上两者之间的平衡
当α
确定时,树越大,与训练数据的拟合就越好,C(T)越小,但是树的复杂度也会上升,|T| 上升;而树越小,树的复杂度就越低,|T| 越小,但往往和训练数据的拟合程度不好,C(T) 又会上升
较大的α
使得生成较简单的树,较小的α使得生成较复杂的树,当α=0
,就完全不考虑树的复杂度了,相当于不进行剪枝操作
决策树生成只考虑提高信息增益来更好拟合训练数据,但决策树剪枝则通过优化损失函数来减少树的复杂度;可以说决策树生成学习的是局部模型,而决策树剪枝学习的是整体模型
剪枝算法流程
计算每个节点的经验熵
递归地从树的叶节点向上回缩:设一组叶节点
回缩到父节点前后的整体树分别是TB
和TA,其对应的损失函数值分别是Cα(TB)和Cα(TA)
,如果
那么将父节点变为新的叶节点,即剪枝
重复执行步骤2,直到不能再继续为止,得到损失函数最小的子树Tα
5
代码部分,先挖个坑。。。过段时间回来填
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16