
【数据看球】2018 年世界杯夺冠预测,CDA带你用机器学习来分析
随着2018年FIFA世界杯开赛在即,世界各地的球迷都渴望知道:谁将夺取梦寐以求的冠军奖杯?
如果你不仅是一名资深球迷,而且还是技术宅,那么你还可以利用机器学习和人工智能这两个利器。下面让我们一起预测哪个国家会赢得本次世界杯。
足球比赛涉及到很多因素,因此许多因素无法在机器学习模型中进行探讨。这只是我作为技术宅,从数据角度的尝试。
目标
1. 目标是使用机器学习预测谁将赢得2018年世界杯。
2. 预测世界杯中每场比赛的结果。
3. 对下场比赛进行模拟预测,比如四分之一决赛,半决赛和决赛。
这些目标体现了现实世界中的机器学习预测问题,当中涉及的机器学习任务包括:数据整合,特征建模和结果预测。
数据
我使用了Kaggle的两个数据集,包括自1930年起所有参赛队在国际比赛中的结果。
Kaggle数据集链接:
(https://www.kaggle.com/martj42/international-football-results-from-1872-to-2017/data)
局限性:
由于国际足联排名创建于90年代,因此缺乏大部分数据集。在此我们按照历史比赛记录分析。
环境和工具:
jupyter notebook,numpy,pandas,seaborn,matplotlib和scikit-learn。
我们首先要对两个数据集进行探索性分析,通过特征工程选择最相关的特征进行预测。之后进行数据处理,选择机器学习模型,最后将其部署到数据集上。
开始
首先,导入必要的库并将数据集加载到数据框。
导入库
加载数据集
通过调用两个数据集world_cup.head()和results.head(),确保数据集加载到数据框中,如下所示:
探索性分析:
对两个数据集进行分析后,所得数据集包含过去比赛的数据。新产生的数据集对分析和预测之后的比赛很有用。
在数据科学项目中,确定哪些特征与机器学习模型相关是最耗时的部分。
现在,让我们在结果数据集中添加净胜球数和结果列。
查看新的结果数据框。
然后我们将使用数据的子集。其中包括只有尼日利亚参加的比赛。这将有助于我们了解某支球队的特色,并拓展运用到其他参赛球队。
第一届世界杯于1930年举办。创建年份列,选择1930年以后的所有比赛。
现在可以将这些年尼日利亚的比赛结果进行可视化。
每个世界杯参赛球队的获胜率是很有用的指标,我们可以用它来预测每场比赛的结果。其中比赛场地并不重要。
参赛球队
对所有参赛球队创建数据框。
然后进一步过滤数据框,只显示从1930年起到今年世界杯的球队,减少重复的球队。
创建年份列,并删除1930年之前的比赛,以及不影响比赛结果的列,例如日期、主队进球数、客队进球数、锦标赛、城市、国家、净胜球数和比赛年份。
修改“Y”(预测标签)以简化模型处理。
如果主队获胜,获胜队(winner_team)列将显示“2”,如果是平局则显示“1”,如果客队获胜则显示“0”。
通过设置虚拟变量,将主队(home_team)和客队(away _team)从分类变量转换为连续输入。
使用 pandas,get_dummies()函数。从而用one-hot(数字“1”和“0”)代替分类列,确保加载到Scikit-learn模式。
然后,我们将X和Y集分开,并将数据的70%用于训练,30%用于测试。
我们将使用逻辑回归。通过逻辑函数估计概率,我可以测量分类因变量和一个或多个自变量之间的关系。
换句话说,逻辑回归通过影响结果的数据点(统计数据)对结果进行预测(赢或输)。
在实际运用中,每次对一场比赛输入算法,同时提供上述“数据集”和比赛的实际结果。然后,模型将学习输入数据将如何对比赛结果产生积极或消极影响。
让我们看到最终数据框:
看起来很棒。现在加入算法:
我们的模型在训练集上的准确率为57%,测试集的准确率为55%。这并不理想,但让我们继续。
现在我们将创建数据框部署模型。
首先,我们将加载截至到2018年4月的国际足联排名数据集和小组赛阶段的数据集。
国际足联排名:
(https://us.soccerway.com/teams/rankings/fifa/?ICID=TN_03_05_01)
小组赛阶段数据:
(https://fixturedownload.com/results/fifa-world-cup-2018)
国际足联排名较高的球队将被视为“受欢迎”球队。由于世界杯中不分“主队”或“客队”球队,他们都将归属到“home_teams”列。然后,根据每个团队的排名将球队添加到新的预测数据集中。下一步将创建虚拟变量并部署机器学习模型。
预测比赛
你肯定在想什么时候才能到预测部分。前面代码和解释占据了太多的篇幅,现在我们开始预测。
将模型部署到数据集
首先将模型部署到小组赛。
下面是小组赛的结果。
该模型预测了三场平局,并预测西班牙有很高的胜率。我用这个网站预测了小组赛。
(https://ultra.zone/2018-FIFA-World-Cup-Group-Stage)
16强
以下是对16强的预测。
四分之一决赛
四分之一决赛的情况为:
葡萄牙vs法国,巴西vs英格兰,西班牙vs阿根廷,德国vs比利时。
预测结果:
半决赛
葡萄牙vs巴西;德国vs阿根廷
预测结果:
决赛
巴西vs德国
预测结果:巴西获胜。
根据模型预测,巴西很可能赢得本次世界杯。
结语
研究和改进空间:
1.数据集。为了改进数据集,你可以使用国际足联数据来评估球队中每个球员的水平。
2.混淆矩阵能够用于分析模型分析错误的情况。
3.我们可以整合更多模型,从而提高预测准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26