【数据看球】2018 年世界杯夺冠预测,CDA带你用机器学习来分析
随着2018年FIFA世界杯开赛在即,世界各地的球迷都渴望知道:谁将夺取梦寐以求的冠军奖杯?
如果你不仅是一名资深球迷,而且还是技术宅,那么你还可以利用机器学习和人工智能这两个利器。下面让我们一起预测哪个国家会赢得本次世界杯。
足球比赛涉及到很多因素,因此许多因素无法在机器学习模型中进行探讨。这只是我作为技术宅,从数据角度的尝试。
目标
1. 目标是使用机器学习预测谁将赢得2018年世界杯。
2. 预测世界杯中每场比赛的结果。
3. 对下场比赛进行模拟预测,比如四分之一决赛,半决赛和决赛。
这些目标体现了现实世界中的机器学习预测问题,当中涉及的机器学习任务包括:数据整合,特征建模和结果预测。
数据
我使用了Kaggle的两个数据集,包括自1930年起所有参赛队在国际比赛中的结果。
Kaggle数据集链接:
(https://www.kaggle.com/martj42/international-football-results-from-1872-to-2017/data)
局限性:
由于国际足联排名创建于90年代,因此缺乏大部分数据集。在此我们按照历史比赛记录分析。
环境和工具:
jupyter notebook,numpy,pandas,seaborn,matplotlib和scikit-learn。
我们首先要对两个数据集进行探索性分析,通过特征工程选择最相关的特征进行预测。之后进行数据处理,选择机器学习模型,最后将其部署到数据集上。
开始
首先,导入必要的库并将数据集加载到数据框。
导入库
加载数据集
通过调用两个数据集world_cup.head()和results.head(),确保数据集加载到数据框中,如下所示:
探索性分析:
对两个数据集进行分析后,所得数据集包含过去比赛的数据。新产生的数据集对分析和预测之后的比赛很有用。
在数据科学项目中,确定哪些特征与机器学习模型相关是最耗时的部分。
现在,让我们在结果数据集中添加净胜球数和结果列。
查看新的结果数据框。
然后我们将使用数据的子集。其中包括只有尼日利亚参加的比赛。这将有助于我们了解某支球队的特色,并拓展运用到其他参赛球队。
第一届世界杯于1930年举办。创建年份列,选择1930年以后的所有比赛。
现在可以将这些年尼日利亚的比赛结果进行可视化。
每个世界杯参赛球队的获胜率是很有用的指标,我们可以用它来预测每场比赛的结果。其中比赛场地并不重要。
参赛球队
对所有参赛球队创建数据框。
然后进一步过滤数据框,只显示从1930年起到今年世界杯的球队,减少重复的球队。
创建年份列,并删除1930年之前的比赛,以及不影响比赛结果的列,例如日期、主队进球数、客队进球数、锦标赛、城市、国家、净胜球数和比赛年份。
修改“Y”(预测标签)以简化模型处理。
如果主队获胜,获胜队(winner_team)列将显示“2”,如果是平局则显示“1”,如果客队获胜则显示“0”。
通过设置虚拟变量,将主队(home_team)和客队(away _team)从分类变量转换为连续输入。
使用 pandas,get_dummies()函数。从而用one-hot(数字“1”和“0”)代替分类列,确保加载到Scikit-learn模式。
然后,我们将X和Y集分开,并将数据的70%用于训练,30%用于测试。
我们将使用逻辑回归。通过逻辑函数估计概率,我可以测量分类因变量和一个或多个自变量之间的关系。
换句话说,逻辑回归通过影响结果的数据点(统计数据)对结果进行预测(赢或输)。
在实际运用中,每次对一场比赛输入算法,同时提供上述“数据集”和比赛的实际结果。然后,模型将学习输入数据将如何对比赛结果产生积极或消极影响。
让我们看到最终数据框:
看起来很棒。现在加入算法:
我们的模型在训练集上的准确率为57%,测试集的准确率为55%。这并不理想,但让我们继续。
现在我们将创建数据框部署模型。
首先,我们将加载截至到2018年4月的国际足联排名数据集和小组赛阶段的数据集。
国际足联排名:
(https://us.soccerway.com/teams/rankings/fifa/?ICID=TN_03_05_01)
小组赛阶段数据:
(https://fixturedownload.com/results/fifa-world-cup-2018)
国际足联排名较高的球队将被视为“受欢迎”球队。由于世界杯中不分“主队”或“客队”球队,他们都将归属到“home_teams”列。然后,根据每个团队的排名将球队添加到新的预测数据集中。下一步将创建虚拟变量并部署机器学习模型。
预测比赛
你肯定在想什么时候才能到预测部分。前面代码和解释占据了太多的篇幅,现在我们开始预测。
将模型部署到数据集
首先将模型部署到小组赛。
下面是小组赛的结果。
该模型预测了三场平局,并预测西班牙有很高的胜率。我用这个网站预测了小组赛。
(https://ultra.zone/2018-FIFA-World-Cup-Group-Stage)
16强
以下是对16强的预测。
四分之一决赛
四分之一决赛的情况为:
葡萄牙vs法国,巴西vs英格兰,西班牙vs阿根廷,德国vs比利时。
预测结果:
半决赛
葡萄牙vs巴西;德国vs阿根廷
预测结果:
决赛
巴西vs德国
预测结果:巴西获胜。
根据模型预测,巴西很可能赢得本次世界杯。
结语
研究和改进空间:
1.数据集。为了改进数据集,你可以使用国际足联数据来评估球队中每个球员的水平。
2.混淆矩阵能够用于分析模型分析错误的情况。
3.我们可以整合更多模型,从而提高预测准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30