如何在R语言中读取数据
读取数据有以下几种方式:
1.最常用的是采用读取表格数据的函数 read.table()以及read.csv().。这些函数读取一种以行列的格式存储数据的文本文件,然后在R中返回一个数据框。
2.readLines()用于逐行读取文本文件,实际上可以是任何格式的文件,在R中返回一个字符向量。
3.source()是读取R的重要函数,如果你有R代码例如函数或者其他东西写成的文件,都可以用source()将其中的代码读入R中。
4.dget()也可以用来读取R代码文件, 但它读取的是逆句法分析过后以文本文件储存的 R 对象 。
5.load()和unserialize()用于把二进制对象读入R
写入数据有以下几种方式,它们与读取数据一一对应:
1.read.table()是最常用的读入数据的函数,我们有必要了解它的参数是什么以及它们的意义:
第一个参数file,很明显是文件或者链接的名称,通常你提供的文件名都应当是字符串 ,它是你电脑上一个特定文件的路径。
第二个参数header是一个逻辑标志,表明第一行是否是表头 比如 第一行写了所有的变量名 那么这并不是实际数据的一部分 只是提供了标记的行 你要告诉 read.table 函数 第一行是否包含变量名 还是直接就是数据
第三个 参数是sep,表示分隔符 ,它是一个字符串 用于标示每一列是如何分隔的 假如你有一个文件用逗号分隔 那么分隔符就是逗号 有的时候会碰到分隔符是冒号、制表符或者空格的文件 这时候你就要告诉 read.table 函数分隔符是什么了
第四个参数是colClasses ,应当是一个字符向量 其长度应当与数据集的列数相等 这个字符向量表示 数据集中每一列数据的类 这么说吧 第一列数据是数值型的 第二列数据是逻辑型 第三列数据是因子 诸如此类 colClass 不是一个必须的向量 但它会告诉 read.table() 每一列数据的类型 。
第五个参数是nRows,它 是数据集中数据的行数 虽然不是必须的但有时也会用到。
第六个参数是comment.char,它 是字符串 表明文件中用于注释的字符 默认通常是井号 所有在注释符号后面的字符都会被忽略。
第七个参数是skip ,它指定了从文件开头往下忽略多少行 有的时候文件开头可能有一些头信息或者非数据区域 你想要跳过那些部分 所以你可以告诉 read.table 函数去跳过比如开头的 10 行或者是 100 行 然后从那里再开始读取数据
最后一个参数是stringAsFactors,默认为 TRUE 它的作用是 通过它可以选择是否把字符变量编码成因子 所以这是默认操作 每次 read.table() 遇到一列看起来像字符变量的数据 它就会假设你希望读入的 是一个因子变量 如果你不想把这一列设成因子变量 那么你可以把 stringAsFactors 设置为 FALSE
当你在使用的时候,你可以直接传入文件名,它会自动调配好剩下的部分。
read.table() 是等价的 除了 read.csv() 的默认分隔符是逗号 而 read.table() 的默认分隔符是空格外。 另外 read.csv() 会默认把 header 参数设置为 TRUE
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21