京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Spark是发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,性能超过Hadoop百倍,即使使用磁盘,迭代类型的计算也会有10倍速度的提升。Spark从多迭代批量处理出发,兼收并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。Spark当下已成为Apache基金会的顶级开源项目,拥有着庞大的社区支持——活跃开发者人数已超过Hadoop MapReduce)。这里,我们为大家分享许鹏的“Apache Spark源码走读”系列博文,从源码方面对这个流行大数据计算框架进行深度了解。
以下为博文
楔子
源码阅读是一件非常容易的事,也是一件非常难的事。容易的是代码就在那里,一打开就可以看到。难的是要通过代码明白作者当初为什么要这样设计,设计之初要解决的主要问题是什么。
在对Spark的源码进行具体的走读之前,如果想要快速对Spark的有一个整体性的认识,阅读Matei Zaharia做的Spark论文是一个非常不错的选择。
在阅读该论文的基础之上,再结合Spark作者在2012 Developer Meetup上做的演讲Introduction to Spark Internals,那么对于Spark的内部实现会有一个比较大概的了解。
有了上述的两篇文章奠定基础之后,再来进行源码阅读,那么就会知道分析的重点及难点。
基本概念(Basic Concepts)
1. RDD——Resillient Distributed Dataset 弹性分布式数据集。
2. Operation——作用于RDD的各种操作分为transformation和action。
3. Job——作业,一个JOB包含多个RDD及作用于相应RDD上的各种operation。
4. Stage——一个作业分为多个阶段。
5. Partition——数据分区, 一个RDD中的数据可以分成多个不同的区。
6. DAG——Directed Acycle graph,有向无环图,反应RDD之间的依赖关系。
7. Narrow dependency——窄依赖,子RDD依赖于父RDD中固定的data partition。
8. Wide Dependency——宽依赖,子RDD对父RDD中的所有data partition都有依赖。
9. Caching Managenment——缓存管理,对RDD的中间计算结果进行缓存管理以加快整体的处理速度。
编程模型(Programming Model)
RDD是只读的数据分区集合,注意是数据集。
作用于RDD上的Operation分为transformantion和action。 经Transformation处理之后,数据集中的内容会发生更改,由数据集A转换成为数据集B;而经Action处理之后,数据集中的内容会被归约为一个具体的数值。
只有当RDD上有action时,该RDD及其父RDD上的所有operation才会被提交到cluster中真正的被执行。
从代码到动态运行,涉及到的组件如下图所示。
演示代码
运行态(Runtime view)
不管什么样的静态模型,其在动态运行的时候无外乎由进程,线程组成。
用Spark的术语来说,static view称为dataset view,而dynamic view称为parition view。关系如图所示
在Spark中的task可以对应于线程,worker是一个个的进程,worker由driver来进行管理。
那么问题来了,这一个个的task是如何从RDD演变过来的呢?下节将详细回答这个问题。
部署(Deployment view)
当有Action作用于某RDD时,该action会作为一个job被提交。
在提交的过程中,DAGScheduler模块介入运算,计算RDD之间的依赖关系。RDD之间的依赖关系就形成了DAG。
每一个JOB被分为多个stage,划分stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个stage,避免多个stage之间的消息传递开销。
当stage被提交之后,由taskscheduler来根据stage来计算所需要的task,并将task提交到对应的worker。
Spark支持以下几种部署模式,Standalone、Mesos和YARN。这些部署模式将作为taskscheduler的初始化入参。
RDD由以下几个主要部分组成
partitions——partition集合,一个RDD中有多少data partition
dependencies——RDD依赖关系
compute(parition)——对于给定的数据集,需要作哪些计算
preferredLocations——对于data partition的位置偏好
partitioner——对于计算出来的数据结果如何分发
缓存机制(caching)
RDD的中间计算结果可以被缓存起来,缓存先选Memory,如果Memory不够的话,将会被写入到磁盘中。
根据LRU(last-recent update)来决定哪先内容继续保存在内存,哪些保存到磁盘。
容错性(Fault-tolerant)
从最初始的RDD到衍生出来的最后一个RDD,中间要经过一系列的处理。那么如何处理中间环节出现错误的场景呢?
Spark提供的解决方案是只对失效的data partition进行事件重演,而无须对整个数据全集进行事件重演,这样可以大大加快场景恢复的开销。
RDD又是如何知道自己的data partition的number该是多少?如果是HDFS文件,那么HDFS文件的block将会成为一个重要的计算依据。
集群管理(cluster management)
task运行在cluster之上,除了Spark自身提供的Standalone部署模式之外,Spark还内在支持Yarn和mesos。
Yarn来负责计算资源的调度和监控,根据监控结果来重启失效的task或者是重新distributed task一旦有新的node加入cluster的话。本文:CDA数据分析师官网
这一部分的内容需要参Yarn的文档。
小结
在源码阅读时,需要重点把握以下两大主线。
静态view 即 RDD,transformation and action
动态view 即 life of a job, 每一个job又分为多个stage,每一个stage中可以包含多个rdd及其transformation,这些stage又是如何映射成为task被distributed到cluster中
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31