R语言数据格式长数据和宽数据之间的转换
什么是长数据?
长数据一般是指数据集中的变量没有做明确的细分,即变量中至少有一个变量中的元素存在值严重重复循环的情况(可以归为几类),表格整体的形状为长方形,即 变量少而观察值多。例如:
此数据集为随机抽取6个省和其13年到15年的读取GDP,可以看到变量year 为安装时间顺序重复的变量
什么是宽数据?
宽数据是指数据集对所有的变量进行了明确的细分,各变量的值不存在重复循环的情况也无法归类。数据总体的表现为 变量多而观察值少。
3.为什么需要转换?
长数据与宽数据之间的转换通常为以下两个原因:
时间序列数据想要观察多个种类的变量在一段时间内的变化,如上例,宽数据格式无法利用ggplot做出图形。
当数据清洗完成后,导入某些软件时,例如导入SPSS软件时宽数据格式会更好。
4.转换的方法
使用到的包
函数的使用方法
library(tidyr)# 使用的gather & spread
library(reshape2) # 使用的函数 melt & dcast
#使用gather函数将宽数据gd1转换为长数据gd1_long
gd1_long<-gather(gd1,year,gdp,X2015年:X2006年)
#使用melt 函数将宽数据gd1转换为长数据gd1_long1
gd1_long1<-melt(gd1,
id.vars = c('地区'),#需要保留不参与聚合的变量,
measure.vars = c('X2015年','X2006年')#用于聚合的变量,
variable.name='year',
value.name='gdp')
#ps: id_vars和 measure.vars只需要制定一个即可;另外一个默认是除指定的变量外的所有变量.
#使用spread函数将gd1_long长数据转换为宽数据gd1_wide
gd1_wide<-spread(gd1_long,year,gdp) #year为需要分解的变量,gdp为分解后的列的取值
#使用dcast函数将gd1_long长数据转换为宽数据gd1_wide1
gd1_wide1<-dcast(gd1_long1,地区~gd1_long1$year,value.var = 'gdp')
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21