盘点丨2018 年热门 Python 库丨TOP20
在解决数据科学任务和挑战方面,Python继续处于领先地位。去年,我对当时热门的Python库进行了总结。今年,我在当中加入新的库,重新对2018年热门Python库进行全面盘点。
其实入选的库远不止20个,但由于一些库针对相同问题是可以相互替代的,因此没有纳入其中。
核心库和统计
1. NumPy(提交:17911,贡献者:641)
首先介绍科学应用方面的库,其中NumPy是不可忽视的选择。NumPy用于处理大型多维数组和矩阵,并通过大量的高级数学函数和实现方法进行各种操作。
在过去一年里,NumPy进行了大量改进。除了bug修复和兼容性问题之外,还涉及到样式可能性,即NumPy对象的格式化打印。
2. SciPy(提交:19150,贡献者:608)
科学计算方面的另一个核心库是SciPy。SciPy基于NumPy,因此扩展了NumPy的功能。SciPy的主要数据结构是由Numpy实现的多维数组。当中包括许多解决线性代数、概率论、积分等任务的工具。
SciPy的主要改进包括,持续集成到不同操作系统,以及添加的新功能和新方法。此外,还封装了许多新的BLAS和LAPACK函数。
3. Pandas(提交:17144,贡献者:1165)
Pandas是一个Python库,提供高级数据结构和各种分析工具。主要特点是能够将相当复杂的数据操作转换为一两条命令。Pandas包含许多用于分组、过滤和组合数据的内置方法,以及时间序列功能。
Pandas库已推出多个新版本,其中包括数百个新功能、增强功能、bug修复和API改进。这些改进包括分类和排序数据方面,更适合应用方法的输出,以及执行自定义操作。
4. StatsModels(提交:10067,贡献者:153)
Statsmodels是一个Python模块,用于统计模型估计、执行统计测试等统计数据分析。在它的帮助下,你可以使用机器学习方法进行各种绘图尝试。
Statsmodels在不断改进。今年加入了时间序列方面的改进和新的计数模型,即广义泊松、零膨胀模型和负二项。还包括新的多变量方法 ——因子分析、多元方差分析和方差分析中的重复测量。
可视化
5. Matplotlib(提交:25747,贡献者:725)
Matplotlib是用于创建二维图表和图形的低级库。使用Matplotlib,你可以构建直方图、散点图、非笛卡尔坐标图等图表。此外,许多热门的绘图库都能与Matplotlib结合使用。
Matplotlib在颜色、尺寸、字体、图例等方面都有一定改进。外观方面包括坐标轴图例的自动对齐;色彩方面也做出改进,对色盲更加友好。
6. Seaborn(提交:2044,贡献者:83)
Seaborn是基于matplotlib库更高级别的API。它包含更适合处理图表的默认设置。此外,还包括时间序列等丰富的可视化图库。
Seaborn的更新包括bug修复。同时,还包括FacetGrid与PairGrid的兼容性,增强了matplotlib后端交互,并在可视化中添加了参数和选项。
7. Plotly(提交:2906,贡献者:48)
Plotly能够让你轻松构建复杂的图形。Plotly适用于交互式Web应用程序。可视化方面包括等高线图、三元图和三维图。
Plotly不断增加新的图像和功能,对动画等方面也提供了支持。
8. Bokeh(提交:16983,贡献者:294)
Bokeh库使用JavaScript小部件,在浏览器中创建交互式和可缩放的可视化。Bokeh提供了多种图形集合、样式,并通过链接图、添加小部件和定义回调等形式增强互动性。
Bokeh在交互式功能的进行了改进,比如旋转分类标签、小型缩放工具和自定义工具提示字段的增强。
9. Pydot(提交:169,贡献者:12)
Pydot用于生成复杂的定向图和非定向图。它是用Python编写的Graphviz接口。使用Pydot能够显示图形结构,这经常用于构建神经网络和基于决策树的算法。
10. Scikit-learn(提交:22753,贡献者:1084)
Scikit-learn是基于NumPy和SciPy的Python模块,并且是处理数据方面的不错选择。Scikit-learn为许多机器学习和数据挖掘任务提供算法,比如聚类、回归、分类、降维和模型选择。
Scikit-learn已做出了许多改进。改进包括交叉验证、使用多个指标,近邻取样和逻辑回归等训练方法也有小的改进。主要更新还包括完善常用术语和API元素的术语表,这能帮助用户熟悉Scikit-learn中的术语和规则。
11. XGBoost / LightGBM / CatBoost(提交:3277/1083/1509,贡献者:280/79/61)
梯度提升(gradient boosting)是最流行的机器学习算法之一,这在决策树模型中是至关重要的。因此我们需要重视XGBoost、LightGBM和CatBoost。这几个库都用相同的方式解决常见问题。这些库能够更优化、扩展且快速地实现梯度提升,从而它们在数据科学家和Kaggle竞争中备受追捧,其中许多人在这些算法的帮助下赢得了比赛。
12. Eli5(提交:922,贡献者:6)
通常机器学习模型预测的结果并不特别清晰,这时就需要用到eli5了。它可以用于可视化和调试机器学习模型,并逐步跟踪算法运行情况。同时eli5能为scikit-learn,XGBoost,LightGBM,lightning和sklearn-crfsuite库提供支持。
13. TensorFlow(提交:33339,贡献者:1469)
TensorFlow是用于深度学习和机器学习的热门框架,由谷歌大脑开发。TensorFlow能够用于多个数据集的人工神经网络。TensorFlow的主要应用包括对象识别、语音识别等等。
新版本中加入了新的功能。最新的改进包括修复安全漏洞,以及改进TensorFlow和GPU集成,比如能在一台机器上的多个GPU上运行评估器模型。
14. PyTorch(提交:11306,贡献者:635)
PyTorch是一个大型框架,能通过GPU加速执行tensor计算,创建动态计算图并自动计算梯度。此外,PyTorch为解决神经网络相关的应用提供了丰富的API。
PyTorch基于Torch,它是用C语言实现的开源的深度学习库。Python API于2017年推出,从此之后该框架越来越受欢迎,并吸引了大量数据科学家。
15. Keras(提交:4539,贡献者:671)
Keras是用于神经网络的高级库,可运行与TensorFlow和Theano。现在由于推出新版本,还可以使用CNTK和MxNet作为后端。它简化了许多任务,并大大减少了代码数量。但缺点是不适合处理复杂任务。
Keras在性能、可用性、文档即API方面都有改进。新功能包括Conv3DTranspose层、新的MobileNet应用等。
分布式深度学习
16. Dist-keras / elephas / spark-deep-learning(提交:1125/170/67,贡献者:5/13/11)
由于越来越多的用例需要大量的精力和时间,深度学习问题变得更为重要。但是,使用Apache Spark之类的分布式计算系统能够更容易处理大量数据,这又扩展了深度学习的可能性。
因此dist-keras、elephas、和spark-deep-learning变得更为普及,由于它们有能用于解决相同任务,因此很难从中取舍。这些包能够让你在Apache Spark的帮助下,直接通过Keras库训练神经网络。Spark-deep-learning还提供了使用Python神经网络创建管道的工具。
自然语言处理
17. NLTK(提交:13041,贡献者:236)
NLTK是一组库,是进行自然语言处理的平台。在NLTK的帮助下,你可以通过多种方式处理和分析文本,对其进行标记和提取信息。NLTK还可用于原型设计和构建研究系统。
NLTK的改进包括API和兼容性的小改动,以及CoreNLP的新接口。
18. SpaCy(提交:8623,贡献者:215)
SpaCy是自然语言处理库,具有出色的示例、API文档和演示应用。该库用Cython编写,Cython是C语言在Python的扩展。它支持将近30种语言,提供简单的深度学习集成,并能确保稳定性和高准确性。SpaCy的另一个强大功能是无需将文档分解,整体处理整个文档。
19. Gensim(提交:3603,贡献者:273)
Gensim是Python库,用于语义分析、主题建模和矢量空间建模,建立在Numpy和Scipy之上。它提供了word2vec等NLP算法实现。尽管gensim拥有自己的models.wrappers.fasttext实现,但fasttext库也可用于词语表示的高效学习。
数据抓取
20. Scrapy(提交:6625,贡献者:281)
Scrapy可用于创建扫描页面和收集结构化数据。另外,Scrapy还可以从API中提取数据。由于其可扩展性和便携性,Scrapy非常好用。
今年Scrapy的更新包括代理服务器升级,以及错误通知和问题识别系统。这也为使用scrapy解析机械能元数据设置提供了新的方法。
结语
以上就是2018年数据科学方面的Python库的整理。与去年相比,一些新的库越来越受欢迎,数据科学方面常用的库也在不断改进。
以下的表格显示了github上各个库的统计数据。
尽管今年我们扩大了列表,但仍然可能有一些库没有包含在内,欢迎留言补充。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20