
用R语言进行复杂网络可视化
现实世界中,网络世界大量存在,铁路线路网络,航空网络,人际关系网络。复杂网络是大量真实复杂系统的拓扑关系。借助复杂网络分析,我们期望可以化繁为简,找到隐藏的拓扑关系新结构,找到节点与节点之间的模式,同时实现数据可视化展示。
复杂网络系列
我们的复杂网络个人笔记将包含以下几个部分:
• 复杂网络基础知识及网络可视化
• 复杂网络主要几种拓扑关系及应用
• 复杂网络社团挖掘
复杂网络中的基本知识点
• 节点(vertex) : 一个一个散落的点,如每个人可以是一个点,每个url是一个点。
• 边 (edge): 连接点与点直接的线;边是节点与节点之间的关系表示。
• 度(degree):某个节点的度是指与该连接相连接的其他节点的个数;
• 平均度:所有节点的度之和除以节点个数
• 节点的聚类系数:某个节点的邻集节点个数,这些节点之间的边数与这些节点之间可能存在的最大边上之比。
• 最短路径:节点之间边数最少的路径
• 平均路径:所有节点对之间的距离的平均值
• 点介数:通过该节点的最短路径的条数
• 边介数:通过该边的最短路径的条数
• 核数:反复去掉一个网络图中度数小于等于K的节点后,剩下的子图。如果一个节点存在K-核,而在K+1 -核中被去掉,则该节点的核数为K
基本的复杂网络结构
• 规则网络
• ER随机图
• 小世界网络
• BA无标度网络
复杂网络可视化
data=read.csv("test.csv",header =TRUE)
head(data)
• 基础图
library(igraph)
data_stru<-graph.data.frame(data)
plot(data_stru)
• 数据为随机生成的。
复杂网络可视化
• 根据数值改变边的大小,改变颜色,添加值
library(igraph)
data_stru<-graph.data.frame(data)
plot(data_stru,edge.width=data$freq/100,edge.color=rainbow(40),edge.arrow.size=2,edge.label=data$freq)
复杂网络可视化
• 根据节点度的不同,画出不同节点的大小
library(igraph)
data_stru<-graph.data.frame(data)
plot(data_stru,edge.width=data$freq/100,edge.color=rainbow(40),edge.arrow.size=2,edge.label=data$freq,vertex.size=degree(data_stru))
复杂网络可视化
• 根据节点度的不同,画出不同节点的颜色
library(igraph)
data_stru<-graph.data.frame(data)
plot(data_stru,edge.width=data$freq/100,edge.color=rainbow(40),edge.arrow.size=2,edge.label=data$freq,vertex.size=degree(data_stru),vertex.color=degree(data_stru))
复杂网络可视化
• 画出某个节点的N层关系
library(igraph)
data_stru<-graph.data.frame(data)
data_degree<-graph.neighborhood(data_stru,1)
plot(data_degree[[6]],edge.width=data$freq/100,edge.color=rainbow(40),edge.arrow.size=2,edge.label=data$freq,vertex.size=degree(data_stru),vertex.color=degree(data_stru))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10