最小二乘法线性拟合和2次曲线拟合算法
最近由于项目要求,应用了最小二乘法线性拟合和2次曲线拟合算法,现总结如下:
最小二乘法线性拟合应用已有的采样时间点,再现这些点所描述的线性变化,即求出一个线性方程y=ax+b(这个算法的主要问题也就是如何用给定的数据求线性方程系数a和b)
//最小二乘法线性拟合,线性方程求系数,Xval时间数据,Yval每个时间点上的值数据,n数据的个数,Aval线性方程系数a,Bval线性方程系数b
BOOL DlgDataAnalyse::TwoCurveCompose(double *Xval,double *Yval,long n,double *Aval,double *Bval)
{
double mX,mY,mXX,mXY;
mX=mY=mXX=mXY=0;
for (int i=0;i
mX+=Xval[i];
mY+=Yval[i];
mXX+=Xval[i]*Xval[i];
mXY+=Xval[i]*Yval[i];
}
if(mX*mX-mXX*n==0)return FALSE;
*Aval=(mY*mX-mXY*n)/(mX*mX-mXX*n);
*Bval=(mY-mX*(*Aval))/n;
return TRUE;
}
最小二乘法2次曲线拟合应用已有的采样时间点,再现这些点所描述的2次曲线的变化,即求出一个二次曲线方程y=ax2+bx+c (这个算法的主要问题也就是如何用给定的数据求方程系数abc)
今天使用拟合的最小二乘法,求出了给定的一组坐标系上的点对最接近的直线的。
其具体理论如下:
在科学实验数据处理中,往往要根据一组给定的实验数据,求出自变量x与因变量y的函数关系,这是为待定参数,由于观测数据总有误差,且待定参数ai的数量比给定数据点的数量少(即n<m),因此它不同于插值问题.这类问题不要求通过点,而只要求在给定点上的误差的平方和最小.当时,即
(5.8.1)
这里是线性无关的函数族,假定在上给出一组数据,以及对应的一组权,这里为权系数,要求使最小,其中
(5.8.2)
这就是最小二乘逼近,得到的拟合曲线为y=s(x),这种方法称为曲线拟合的最小二乘法.
(5.8.2)中实际上是关于的多元函数,求I的最小值就是求多元函数I的极值,由极值必要条件,可得
(5.8.3)
根据内积定义(见第三章)引入相应带权内积记号
(5.8.4)
则(5.8.3)可改写为
这是关于参数的线性方程组,用矩阵表示为
(5.8.5)
(5.8.5)称为法方程.当线性无关,且在点集上至多只有n个不同零点,则称在X上满足Haar条件,此时(5.8.5)的解存在唯一(证明见[3]).记(5.8.5)的解为
从而得到最小二乘拟合曲线
(5.8.6)
可以证明对,有
故(5.8.6)得到的即为所求的最小二乘解.它的平方误差为
(5.8.7)
均方误差为
在最小二乘逼近中,若取,则,表示为
(5.8.8)
此时关于系数的法方程(5.8.5)是病态方程,通常当n≥3时都不直接取作为基。
//最小二乘法二次曲线拟合算法,Xval时间数据,Yval每个时间点上的值数据,M代表几次曲线(如:2次的话就是3),N数据的个数,A二次曲线方程的系数(A[2]代表a,A[1]代表b,A[0]代表c)
BOOL DlgDataAnalyse::CalculateCurveParameter(double *Xval,double *Yval,long M,long N,double *A)
{
//X,Y -- X,Y两轴的坐标
//M -- 次数,表示几次曲线
//N -- 采样数目
//A -- 结果参数
register long i,j,k;
double Z,D1,D2,C,P,G,Q;
CDoubleArray B,T,S;
B.SetSize(N);
T.SetSize(N);
S.SetSize(N);
if(M>N)M=N;
for(i=0;i
Z=0;
B[0]=1;
D1=N;
P=0;
C=0;
for(i=0;i
P=P+Xval[i]-Z;
C=C+Yval[i];
}
C=C/D1;
P=P/D1;
A[0]=C*B[0];
if(M>1)
{
T[1]=1;
T[0]=-P;
D2=0;
C=0;
G=0;
for(i=0;i
Q=Xval[i]-Z-P;
D2=D2+Q*Q;
C=Yval[i]*Q+C;
G=(Xval[i]-Z)*Q*Q+G;
}
C=C/D2;
P=G/D2;
Q=D2/D1;
D1=D2;
A[1]=C*T[1];
A[0]=C*T[0]+A[0];
}
for(j=2;j
S[j]=T[j-1];
S[j-1]=-P*T[j-1]+T[j-2];
if(j>=3)
{
for(k=j-2;k>=1;k--)
S[k]=-P*T[k]+T[k-1]-Q*B[k];
}
S[0]=-P*T[0]-Q*B[0];
D2=0;
C=0;
G=0;
for(i=0;i
Q=S[j];
for(k=j-1;k>=0;k--)
Q=Q*(Xval[i]-Z)+S[k];
D2=D2+Q*Q;
C=Yval[i]*Q+C;
G=(Xval[i]-Z)*Q*Q+G;
}
C=C/D2;
P=G/D2;
Q=D2/D1;
D1=D2;
A[j]=C*S[j];
T[j]=S[j];
for(k=j-1;k>=0;k--)
{
A[k]=C*S[k]+A[k];
B[k]=T[k];
T[k]=S[k];
}
}
return TRUE;
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19