图文讲解选择排序算法的原理及在Python中的实现
基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序序列的第一个元素和后续的元素依次相比较,如果后续元素小,则后续元素和第一个元素交换位置放到,这样一轮后,排在第一位的一定是最小的。这样进行n轮,就可排序。
原理图
图1:
图2:
初始数据不敏感,不管初始的数据有没有排好序,都需要经历N2/2次比较,这对于一些原本排好序,或者近似排好序的序列来说并不具有优势。在最好的情况下,即所有的排好序,需要0次交换,最差的情况,倒序,需要N-1次交换。
数据交换的次数较少,如果某个元素位于正确的最终位置上,则它不会被移动。在最差情况下也只需要进行N-1次数据交换,在所有的完全依靠交换去移动元素的排序方法中,选择排序属于比较好的一种。
python代码实现:
def sort_choice(numbers, max_to_min=True):
"""
我这没有按照标准的选择排序,假设列表长度为n,思路如下:
1、获取最大值x,将x移动到列最后。[n1, n2, n3, ... nn]
2、将x追加到排序结果[n1, n3, ... nn, n2]
3、获取排序后n-1个元素[n1, n3, ... nn],重复第一步,重复n-1次。
max_to_min是指从大到小排序,默认为true;否则从小到大排序。
对[8, 4, 1, 0, 9]排序,大致流程如下:
sorted_numbers = []
[8, 4, 1, 0, 9], sorted_numbers = [9]
[4, 1, 0, 8], sorted_numbers = [9, 8]
[1, 0, 4], sorted_numbers = [9, 8, 4]
[0, 1], sorted_numbers = [9, 8, 4, 1]
[0], sorted_numbers = [9, 8, 4, 1, 0]
"""
if len(numbers) <= 1:
return numbers
sorted_list = []
index = 0
for i in xrange(len(numbers) - index):
left_numbers = _get_left_numbers(numbers, max_to_min)
numbers = left_numbers[:-1]
sorted_list.append(left_numbers[-1])
index += 1
return sorted_list
def _get_left_numbers(numbers, get_max=True):
'''
获取最大值或者最小值x,并且将x抽取出来,置于列表最后.
Ex: get_max=True, [1, 4, 3] ⇒ [1, 3, 4]
get_max=False, [1, 4, 3] ⇒ [4, 3 ,1]
'''
max_index = 0
for i, num in enumerate(numbers):
if get_max:
if num > numbers[max_index]:
max_index = i
else:
if num < numbers[max_index]:
max_index = i
numbers = numbers[:max_index] + numbers[max_index + 1:] + [numbers[max_index]]
return numbers
测试一下:
>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=True)
[0, 4, 0, 31, 9, 19, 67, 89]
>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=False)
[4, 0, 31, 9, 19, 89, 67, 0]
>>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=False)
[0, 0, 4, 9, 19, 31, 67, 89]
>>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=True)
[89, 67, 31, 19, 9, 4, 0, 0]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29