商业智能系统BI应用的重难点
对信息化而言,越是强大的工具应用的准入门槛要求越是高。商业智能系统BI的作用是显而易见,但全球的应用率却非常低。在商业智能活动应用最为发达的美国和欧洲地区,应用效果同样是“喜忧参半”,喜的是许多企业都计划实施商业智能,对商业智能的投资在持续增长;忧的是商业智能仍未被广泛地提升到战略性层面的。商业智能在中国,炒得火热,但应用成功的也寥寥无几。主要是一方面,中国的管理信息化应用层次还不高,对商业智能系统缺乏足够认知和经验;另一方面商业智能系统对信息化基础要求较高,有很高的准入门槛,否则失败的几率很大。
企业应用商业智能系统需要在现行管理信息系统较为成熟的基础上应用,这样才能起到事半功倍的效果。不建议企业在毫无信息化搭建经验,或者在信息化搭建初期应用商业智能系统。
另外,在应用的过程中需要重点关注数据处理、模型搭建和展现方式三个部分的工作。
1、数据处理。数据是商业智能系统的主角,基础数据的有效程度直接对系统分析出来的结果有直接影响,这种影响可以达到呈几何级别的错误导向。所以,进行分析的数据处理工作非常重要。这不仅包括数据清洗、数据分类等基础工作,还包括各系统的数据维度划分和数据表达的一致性。在不同的系统中,信息的传递链条不同,数据间的逻辑也不同,在系统分析前,将所有异构系统的数据按照一定的模式进行统一的工作是项既琐碎又费神效果也不太明显而且错误率极高的活,换句话说就是个吃力不讨好的活。但这确实是商业智能系统的最最基础的工作。只有这个地基打好做扎实了,磊起的高楼才坚实。
另外,在数据处理的过程中平衡数据的广度和分析的深度也是一件困难的事情。我们目前基本上对结构化的数据进行处理和分析,但全球产生的数据中85%以上的是非结构化的数据。随着“大数据分析”口号的日渐火热,如何有效的将非结构化的数据转化为有效的结构化数据这本身就是一个难题。企业在做数据挖掘的时候,如果没有本事做到很好处理这些非结构数据的时候,还是别揽那个瓷器活,先分析好结构化数据了先。
2、模型搭建。有人提出说“商务智能(BI)系统最昂贵的地方不是平台,而是模型”,这个观点我比较赞同。系统最贵的部分一般也是智力最为集中的部分。模型的搭建一般都是BI厂商根据各个行业和系统的运作流程总结出来的优秀的经验,宝贵的实践经验和昂贵的知识产权成正比。然而,目前由于国内市场应用BI的企业并不多,应用深入的更少,应用基础也比较薄弱,即使拿来国外先进的商业模型也不一定运转起来,所以尽快建立各种适合国内企业特色的模型是各商务智能(BI)厂商未来要投入大力解决的。在国内也有很大一部分企业采用的自主开发的方式,采用这种方式可以避免高额的费用,但却无法学习到国外先进的商业经验。
3、展现方式。这个展现方式指的是系统分析呈现给使用者的感官效果,图表或者仪表盘所展现出来的内容能被使用者接受。当然,你可以说使用者的使用习惯是可以后期改变和影响的。但前提是系统所做出的展现方式的确比较靠谱,比较简洁和清晰才行。我认为一切给不了别人需要了解的数据和信息的都是混淆视听。
这个展现方式与前两项工作相比,难度系数要小很多,但却是景上添花活儿。因为系统所有的内容都通过展现方式传达给用户,直接影响用户对系统的接受度。这就好比你吃一顿饭,色香味俱全一看就很有食欲,同样营养、味道都不错但摆盘粗糙了点,颜色灰暗了点,你在吃这顿饭的时候,立马感觉就不一样了。虽然你还是能把它吃下去,但用户体验大打折扣,非常划不来。所以,在前期很好的调研用户的使用习惯,很好的对数据进行表达,我觉得也是非常重要的工作。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20