
精准营销神器之客户画像,你值得拥有
现如今越来越多的用户偏爱线上交易,越来越少的人会选择去银行网点咨询,银行业要如何精准营销呢?相比传统的问卷调查,大数据金融科技可以更好地为银行赋能。
为进一步精准、快速分析用户行为习惯、客户画像应运而生,本文就为大家阐述客户画像是如何生成的。
客户信息千千万,在生成客户画像前,需要了解业务方向与重心,例如,某行想知道零售客户群的分布情况,以及客户标签。故本文就以客户资产、投资偏好、风险承受能力三方面收集了近千条数据。
采用经典机器学习算法——聚类算法来生成客户画像,由于聚类算法是无监督模型,数据质量直接决定分群结果的好坏,这里收集到的数据大部分经过处理。
目标
1. 利用聚类算法,得到合理的分群客户。
2. 对聚类中心进行解释,生成客户标签。
3. 阐述测试样本如何分群。
数据源
本文用到的数据已经同步到kaggle数据集中,并将字段说明与结果一同上传了。
https://www.kaggle.com/yuzijuan/customer-clust
开始
环境与工具
Rstudio、openxlsx、fpc、cluster、Nbclust
调库及数据清洗
读取数据,由于数据类型大部分是连续性,故选择kmeans聚类算法,选取连续性字段,剔除掉仅有一个值的变量、剔除掉ID、年月等信息,查询数据分布,发现数据质量较好,可以用于建立数学模型。
建立聚类模型
因为kmeans算法是根据距离求得相似性,故要消除源数据的量纲,这里用scale()将源数据进行Z变化,得到一系列均值为0,方差为1的正态分布。再对每一列数据求和,验证是否变化完毕。如果源数据有取值仅为一值或者严重偏态的数据,验证便不会通过。
这种结果表示验证通过,列求和的数据位于0左右。如果出现下面的情况,则表明前面数据处理有仅有一值的数据,需要处理这样的数据。
距离的计算公式有很多,这里给出常见的几种连续性和离散型计算方式。本文全篇的计算方式均为欧式距离。
聚类的思想较为简单,难点在于要确定初始聚类中心和类别数。如果想自定义初始聚类中心,可先通过采样,用层次法对样本聚类,可以预估k-means的k值和簇中心,以这些k值和簇中心,作为大样本的初始点。对于K值的选取,R中有一个很棒的包,叫NbClust,提供了三十种评价评价指标,用于选择K值,包括聚合优度、轮廓系数以及CCC检验。执行代码如下。
通过结果可以看出,在评价指标中有6个选择分为2类,有5个选择分为3类,有6个选择分为5类。由于奥卡姆剃刀原理存在,系统推荐是分为2类,而基于业务角度思考,分为5类最为可靠。故后续我们将聚类类别分为5类。
由分类分布可知,2类和5类是一样多的票数。
再由kmeans()进行聚类。给定聚类中心为5个,最大迭代20次。算得聚类优度为0.39,给定聚类中心为2个时算得聚类优度为0.13,再次证明选择5类效果更好。
生成聚类结果
通过cluster.km$cluster可知各个样本的类别,再求得各个类别的均值,以及各类均值与总均值之比,可以看出各个类别的差异,以便给客户打标签。代码如下最后将聚类得分保存为clus_profile2.csv文件中。
通过clusplot()可以看前两个成分下的二维聚类效果图,从图中可以看出,聚类结果较好。因为较为明显地将客户分开。
后续我又用kmedios中心聚类,又将数据聚为5类,效果不如kmeans,聚类图如下。
可以看出,中心聚类下,数据有大量重叠的,而均值聚类,较好区分各个类别。
解读聚类结果
聚类算法相比于其他机器学习算法,其实还是很简单的,而聚类的难点就是需要使结果具有可解读性,也就是为客户打标签的过程。本文借助了银行对个人理财产品的风险承受能力评估等级,从低到高分别:A1(保守型)、A2(稳健型)、A3(平衡型)、A4(进取型)、A5(激进型);将得分超过100分(即比总体分布均值大)的标为红色,将得分低于65(即不达总体分布均值的65%)的标为绿色。可以看出区分程度较好。具体解读结果如下。
以第三类举例,可以看出,第三类客户在资产余额、总权益余额、近6月资产均值、近6月总权益均值的比分上均远远大于均值,并且客户爱购买债券、没有投资股票、基金、理财、贵金属、交易较为频繁且金额较大,基于这个特点,我给这类客户定义为高资产、稳中求进、投资意愿高而投资方向上,很可能属于年长多金爱存款的类别,风险承受为平衡型。当然,打标签是一个很好玩的过程,本文主要给大家介绍如何解读,至于解读得好不好,就仁者见仁智者见智。
测试新样本
最后,我简单计算了一下,如果进来新样本是如何计算类别的,由于本文仅1000条数据,没有新样本,故我将训练样本选择了200条作为新样本,纳入模型计算距离并得到类别数。代码如下。
得到的测试结果展示如下。
与原来的聚类结果相比发现并不是百分百聚类正确。不足5%的会聚类错误,在可允许范围内。
最后如果要给领导看,那么就要学会在解读结果方面下文章,给领导讲讲故事,一个好的客户画像不仅需要使结果具有可解读性,更要能够清晰展现客户特点,以便后续精准营销。
结语
本案例不足之处在于:
1. 样本量不算充裕,可能导致在聚类结果上有一定的偏差。
2. 本文未对离散型数据如何处理进行阐述。因为本案例中没有离散型数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09