
精准营销神器之客户画像,你值得拥有
现如今越来越多的用户偏爱线上交易,越来越少的人会选择去银行网点咨询,银行业要如何精准营销呢?相比传统的问卷调查,大数据金融科技可以更好地为银行赋能。
为进一步精准、快速分析用户行为习惯、客户画像应运而生,本文就为大家阐述客户画像是如何生成的。
客户信息千千万,在生成客户画像前,需要了解业务方向与重心,例如,某行想知道零售客户群的分布情况,以及客户标签。故本文就以客户资产、投资偏好、风险承受能力三方面收集了近千条数据。
采用经典机器学习算法——聚类算法来生成客户画像,由于聚类算法是无监督模型,数据质量直接决定分群结果的好坏,这里收集到的数据大部分经过处理。
目标
1. 利用聚类算法,得到合理的分群客户。
2. 对聚类中心进行解释,生成客户标签。
3. 阐述测试样本如何分群。
数据源
本文用到的数据已经同步到kaggle数据集中,并将字段说明与结果一同上传了。
https://www.kaggle.com/yuzijuan/customer-clust
开始
环境与工具
Rstudio、openxlsx、fpc、cluster、Nbclust
调库及数据清洗
读取数据,由于数据类型大部分是连续性,故选择kmeans聚类算法,选取连续性字段,剔除掉仅有一个值的变量、剔除掉ID、年月等信息,查询数据分布,发现数据质量较好,可以用于建立数学模型。
建立聚类模型
因为kmeans算法是根据距离求得相似性,故要消除源数据的量纲,这里用scale()将源数据进行Z变化,得到一系列均值为0,方差为1的正态分布。再对每一列数据求和,验证是否变化完毕。如果源数据有取值仅为一值或者严重偏态的数据,验证便不会通过。
这种结果表示验证通过,列求和的数据位于0左右。如果出现下面的情况,则表明前面数据处理有仅有一值的数据,需要处理这样的数据。
距离的计算公式有很多,这里给出常见的几种连续性和离散型计算方式。本文全篇的计算方式均为欧式距离。
聚类的思想较为简单,难点在于要确定初始聚类中心和类别数。如果想自定义初始聚类中心,可先通过采样,用层次法对样本聚类,可以预估k-means的k值和簇中心,以这些k值和簇中心,作为大样本的初始点。对于K值的选取,R中有一个很棒的包,叫NbClust,提供了三十种评价评价指标,用于选择K值,包括聚合优度、轮廓系数以及CCC检验。执行代码如下。
通过结果可以看出,在评价指标中有6个选择分为2类,有5个选择分为3类,有6个选择分为5类。由于奥卡姆剃刀原理存在,系统推荐是分为2类,而基于业务角度思考,分为5类最为可靠。故后续我们将聚类类别分为5类。
由分类分布可知,2类和5类是一样多的票数。
再由kmeans()进行聚类。给定聚类中心为5个,最大迭代20次。算得聚类优度为0.39,给定聚类中心为2个时算得聚类优度为0.13,再次证明选择5类效果更好。
生成聚类结果
通过cluster.km$cluster可知各个样本的类别,再求得各个类别的均值,以及各类均值与总均值之比,可以看出各个类别的差异,以便给客户打标签。代码如下最后将聚类得分保存为clus_profile2.csv文件中。
通过clusplot()可以看前两个成分下的二维聚类效果图,从图中可以看出,聚类结果较好。因为较为明显地将客户分开。
后续我又用kmedios中心聚类,又将数据聚为5类,效果不如kmeans,聚类图如下。
可以看出,中心聚类下,数据有大量重叠的,而均值聚类,较好区分各个类别。
解读聚类结果
聚类算法相比于其他机器学习算法,其实还是很简单的,而聚类的难点就是需要使结果具有可解读性,也就是为客户打标签的过程。本文借助了银行对个人理财产品的风险承受能力评估等级,从低到高分别:A1(保守型)、A2(稳健型)、A3(平衡型)、A4(进取型)、A5(激进型);将得分超过100分(即比总体分布均值大)的标为红色,将得分低于65(即不达总体分布均值的65%)的标为绿色。可以看出区分程度较好。具体解读结果如下。
以第三类举例,可以看出,第三类客户在资产余额、总权益余额、近6月资产均值、近6月总权益均值的比分上均远远大于均值,并且客户爱购买债券、没有投资股票、基金、理财、贵金属、交易较为频繁且金额较大,基于这个特点,我给这类客户定义为高资产、稳中求进、投资意愿高而投资方向上,很可能属于年长多金爱存款的类别,风险承受为平衡型。当然,打标签是一个很好玩的过程,本文主要给大家介绍如何解读,至于解读得好不好,就仁者见仁智者见智。
测试新样本
最后,我简单计算了一下,如果进来新样本是如何计算类别的,由于本文仅1000条数据,没有新样本,故我将训练样本选择了200条作为新样本,纳入模型计算距离并得到类别数。代码如下。
得到的测试结果展示如下。
与原来的聚类结果相比发现并不是百分百聚类正确。不足5%的会聚类错误,在可允许范围内。
最后如果要给领导看,那么就要学会在解读结果方面下文章,给领导讲讲故事,一个好的客户画像不仅需要使结果具有可解读性,更要能够清晰展现客户特点,以便后续精准营销。
结语
本案例不足之处在于:
1. 样本量不算充裕,可能导致在聚类结果上有一定的偏差。
2. 本文未对离散型数据如何处理进行阐述。因为本案例中没有离散型数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20