
大数据时代,你的网络能够“胜任”吗
大数据可以带来很大的优势,但是你的网络能够“胜任”吗?下面让我们来看看网络面临的一些挑战和注意事项。
想象这样一个情况,在第一集播出之前,广播网络就能够准确地预测电视连续剧的播出情况。我们可以通过工具来分析家电中的传感器的数据,来帮助居民降低功耗,或者利用工具通过实时追踪数据包来优化传播路线和流量消耗。
听起来太超前?其实,我们已经差不多实现了。
移动应用程序、全IP无线网络、在线商务、销售点系统、社交媒体以及传感器的崛起产生了大量数据,如果我们能够正确地分析这些数据,我们将能够挖掘出关键情报来促使业务决策。大部分这些数据是在“空中”收集的,如果迅速采取行动,这可以为企业提供独特的竞争优势,以及解决问题。
但这些数据量非常巨大,并且速度正在不断提升,这也对网络提出了更高的要求。网络需要负责处理数据,在大数据勉强,网络管理员和首席信息官面临着全新的挑战。
大数据正在不断变化,数据量已经超越了TB级到PB级,数据关系已经从简单和已知的发展为复杂和未知的;数据模型已经从固定模式类型转变为不固定模式;数据来源已经从简单的数据录入转变为各种来源,包括手持式设备和机器传感器。大数据包含各种各样的形式,例如,通话录音与信用卡交易信息有所不同。与传统应用程序中的结构化数据不同的是,大数据包含半结构化或非结构化数据,例如文本、音频、视频、点击流、日志文件,以及测量和传输地理及环境信息的传感器的输出数据。
大数据环境改变了数据在网络中流动的方式,大数据产生了更多的东-西或者服务器到服务器流量,而不是南-北或服务器到客户端流量,对于每个客户端互动,可能会有数百或者数千服务器和数据节点交互。应用程序架构已经从集中式模式转变为分布式模式。这与过去20年构建的传统的客户端/服务器网络架构相反。
从各种来源收集数据,大数据系统在服务器集群中运行,这些服务器集群分布在多个网络节点。这些集群以平行向外的模式运行任务。流量模式的运行范围从1到1(电话)、1到多(电视节目)、多到1(音乐会观众)、以及多到多(对讲机),这结合了并行运行的多个节点之间的单播和组播流量。网络管理员需要应对这种综合的流量模式,其中一些流量创建了单独的流,其中一些则创建了多个流。
此外,当数据提供到计算节点时,会产生大量网络流量。分布式节点之间的数据整理操作需要快速和可预测的数据传输。分析系统使用直接附加存储来处理,中间存储来清理数据。
数据需要在网络中四处移动,并在分析过程中有效地操作。随着新数据集的增加,以及来源的增加,工作负载也在增加,这意味着迅速增加容量的需求也在提升。因此,关键是优化网络架构中的本地性、高性能、横向扩展和直接服务节点到服务节点的连接。
其中一个设计模型涉及构建低端商品硬件,以及让分析软件对网络问题作出反应,例如重新启动因为拥塞而超时的任务。这种模式被用于非实时处理,其中完成时间并不是关键,同时,数据主要来自一个来源。
另一种模式则涉及建立基于硬件的系统,该系统能够提供确定性的性能来确保持续的处理。这种模型被用于对来自多个来源的数据的近实时分析。
网络节点在任意到任意的模型中相互连接,它们之间具有单跳,为处理多个大量数据流提供专用处理系统,具有低损耗和确定性性能,这能够有利于实时大数据系统,
交换机架构提供了整个系统带宽和性能的优势,尤其是减少延迟性。位置独立性允许集群和数据从架构中的任何位置实现最佳性能。这种架构还能实现新数据来源到集群的无缝融合,而不需要重新布线,并显著地简化了系统的扩展。这种架构提供的融合,让服务器集群以及存储区域网络跨网络通信。所有资源作为一个实体来管理,政策也可以很容易地部署到整个交换基础设施。
大数据给企业捕捉和分析数据带来了巨大的机会。随着IT企业开始测试和构建自己的解决方案,网络管理员必须考虑这些技术对其服务器、存储、网络和运营基础设施的影响。企业如何能够最好地开发新的基础设施来利用和分析不断增加的大数据流量呢?在开发网络拓扑时,请务必考虑以下问题:
回答这些问题可以帮助你构建更适合大数据的网络,它们将会指示你的基础设施将如何影响数据中心架构以及互连要求。
大数据需要企业制定新的战略,来提供实时业务分析和新的业务洞察力。随着数据的快速变化,企业有必要考虑这些关键技术来满足明天的业务需求,满足最高水平的投资保护、业务敏捷性,并缩短进入市场的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11