
大数据时代,你的网络能够“胜任”吗
大数据可以带来很大的优势,但是你的网络能够“胜任”吗?下面让我们来看看网络面临的一些挑战和注意事项。
想象这样一个情况,在第一集播出之前,广播网络就能够准确地预测电视连续剧的播出情况。我们可以通过工具来分析家电中的传感器的数据,来帮助居民降低功耗,或者利用工具通过实时追踪数据包来优化传播路线和流量消耗。
听起来太超前?其实,我们已经差不多实现了。
移动应用程序、全IP无线网络、在线商务、销售点系统、社交媒体以及传感器的崛起产生了大量数据,如果我们能够正确地分析这些数据,我们将能够挖掘出关键情报来促使业务决策。大部分这些数据是在“空中”收集的,如果迅速采取行动,这可以为企业提供独特的竞争优势,以及解决问题。
但这些数据量非常巨大,并且速度正在不断提升,这也对网络提出了更高的要求。网络需要负责处理数据,在大数据勉强,网络管理员和首席信息官面临着全新的挑战。
大数据正在不断变化,数据量已经超越了TB级到PB级,数据关系已经从简单和已知的发展为复杂和未知的;数据模型已经从固定模式类型转变为不固定模式;数据来源已经从简单的数据录入转变为各种来源,包括手持式设备和机器传感器。大数据包含各种各样的形式,例如,通话录音与信用卡交易信息有所不同。与传统应用程序中的结构化数据不同的是,大数据包含半结构化或非结构化数据,例如文本、音频、视频、点击流、日志文件,以及测量和传输地理及环境信息的传感器的输出数据。
大数据环境改变了数据在网络中流动的方式,大数据产生了更多的东-西或者服务器到服务器流量,而不是南-北或服务器到客户端流量,对于每个客户端互动,可能会有数百或者数千服务器和数据节点交互。应用程序架构已经从集中式模式转变为分布式模式。这与过去20年构建的传统的客户端/服务器网络架构相反。
从各种来源收集数据,大数据系统在服务器集群中运行,这些服务器集群分布在多个网络节点。这些集群以平行向外的模式运行任务。流量模式的运行范围从1到1(电话)、1到多(电视节目)、多到1(音乐会观众)、以及多到多(对讲机),这结合了并行运行的多个节点之间的单播和组播流量。网络管理员需要应对这种综合的流量模式,其中一些流量创建了单独的流,其中一些则创建了多个流。
此外,当数据提供到计算节点时,会产生大量网络流量。分布式节点之间的数据整理操作需要快速和可预测的数据传输。分析系统使用直接附加存储来处理,中间存储来清理数据。
数据需要在网络中四处移动,并在分析过程中有效地操作。随着新数据集的增加,以及来源的增加,工作负载也在增加,这意味着迅速增加容量的需求也在提升。因此,关键是优化网络架构中的本地性、高性能、横向扩展和直接服务节点到服务节点的连接。
其中一个设计模型涉及构建低端商品硬件,以及让分析软件对网络问题作出反应,例如重新启动因为拥塞而超时的任务。这种模式被用于非实时处理,其中完成时间并不是关键,同时,数据主要来自一个来源。
另一种模式则涉及建立基于硬件的系统,该系统能够提供确定性的性能来确保持续的处理。这种模型被用于对来自多个来源的数据的近实时分析。
网络节点在任意到任意的模型中相互连接,它们之间具有单跳,为处理多个大量数据流提供专用处理系统,具有低损耗和确定性性能,这能够有利于实时大数据系统,
交换机架构提供了整个系统带宽和性能的优势,尤其是减少延迟性。位置独立性允许集群和数据从架构中的任何位置实现最佳性能。这种架构还能实现新数据来源到集群的无缝融合,而不需要重新布线,并显著地简化了系统的扩展。这种架构提供的融合,让服务器集群以及存储区域网络跨网络通信。所有资源作为一个实体来管理,政策也可以很容易地部署到整个交换基础设施。
大数据给企业捕捉和分析数据带来了巨大的机会。随着IT企业开始测试和构建自己的解决方案,网络管理员必须考虑这些技术对其服务器、存储、网络和运营基础设施的影响。企业如何能够最好地开发新的基础设施来利用和分析不断增加的大数据流量呢?在开发网络拓扑时,请务必考虑以下问题:
回答这些问题可以帮助你构建更适合大数据的网络,它们将会指示你的基础设施将如何影响数据中心架构以及互连要求。
大数据需要企业制定新的战略,来提供实时业务分析和新的业务洞察力。随着数据的快速变化,企业有必要考虑这些关键技术来满足明天的业务需求,满足最高水平的投资保护、业务敏捷性,并缩短进入市场的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09