Apriori算法进行数据关联分析
从大规模数据集中寻找物品间的隐含关系被称作关联分析或者关联规则学习。这里的主要问题在于,寻找物品的不同组合是一项十分耗时的任务,所需的计算代价很高,蛮力搜索方法并不能解决这个问题,所以需要用更智能的方法在合理的时间范围内找到频繁项集。
为了快速明确概念,从例子出发,现在面对一沓超市购物单,我们要从中分析出哪些物品与哪些物品的关联度特别高,换句话说,当顾客买了商品A后,有多大的几率会购买B商品。通过关联分析可以帮助超市摆放不同商品之间就有了隐形的规则,比如葡萄酒旁边摆着尿布明显提升了两者的销量。
a.解释几个概念
1、数据对象:
假如对超市购物单进行分析,用0,1,2,3代替一种物品,列表如[[1,2],[1,3,0],[0,1],[0,2],[1,2,3,0]]就是一组由5个购物单组成的数据对象,其中每个子列表代替一个购物单(如[1,2]),目标就是分析通过以上的数据分析每种物品的关联关系。
2、支持度定义
支持度是衡量某个物品或物品组合是否频繁的有效指标,计算公式为
支持度=该物品或物品组合出现次数/总购物单数
3、可信度定义
可信度是衡量两个物品或物品组合之间的关联程度的有效指标
如衡量A与B的关联程度 A->B,简单理解就是买了A的顾客会不会买B的关联率
可信度=同时包含AB的支持度/A的支持度({A,B}/{A})
b.创建频繁项集的apriori算法
1、什么是频繁项集?简单理解就是满足它的支持度大于最小支持度的集合,比如集合[1,2]的支持度是0.8,它大于最小支持度是0.7,那么它就是一个频繁项集,由这样的频繁项集组合而成的集合,也可以大体理解为这个项目的所有频繁项集的集。那么超市购物单这个频繁项集有多少呢?假如我们只有{0,1,2,3}这四个商品,那么一共有15种,具体见下图。
发现什么不爽的事了吗?那就是仅仅4个商品就有15种集合,假如5种商品那就是31种集合,商品数越多带来的集合数越大,就会影响计算机计算性能了。这里apriori算法的作用就来了。Apriori原理是说如果某个项集是频繁的,那么它的所有子集也是频繁的。更常用的是它的逆否命题,即如果一个项集是非频繁的,那么它的所有超集也是非频繁的。我们记住最后一句话,假如[2,3]是非频繁的话,那么就可以直接排除{0,2,3},{1,2,3},{0,1,2,3}等集合了。具体的程序怎么解释这个算法呢,就像上图一样,一层一层地计算是否频繁集,下一层频繁集来自于上一层频繁集的合并,具体实现见下面代码。
from numpy import *
def dataset():
return [[1,3,4],[2,3,5],[1,2,3,5],[2,5]]
dataset=dataset()
def createC1(dataset):
sub=[]
for line in dataset:
for i in line:
if [i] not in sub:
sub.append([i])
sub.sort()
return map(frozenset,sub)
def scanD(D,C1,minsupport=0.7):
ssdict={}
L=[]
supportData={}
for tid in D:
for i in C1:
if i.issubset(tid):
if i not in ssdict:
ssdict[i] = 1
else:
ssdict[i] += 1
num=float(len(D))
for key in ssdict:
support=ssdict[key]/num
if support >= minsupport:
L.insert(0,key)
supportData[key] = support
return L,supportData
def apriorizuhe(lk,k):
lenlk=len(lk)
readlist=[]
for i in range(lenlk):
for j in range(i+1,lenlk):
L1=list(lk[i])[:k-2];L2=list(lk[j])[:k-2]
if L1 == L2:
readlist.append(lk[i]|lk[j])
return readlist
def main(dataset,minsupport=0.7):
D=map(set,dataset)
C1=createC1(dataset)
L,supportData=scanD(D,C1,minsupport)
L=[L]
k=2
while(len(L[k-2])>0):
ck=apriorizuhe(L[k-2],k)
L1,supportdata=scanD(D,ck,minsupport)
L.append(L1)
supportData.update(supportdata)
k += 1
return L,supportData
解析apriorizuhe函数实现过程:假设以上都是满足最小支持度的频繁项集,从第一层到第二层的计算,依据apriorizuhe函数的过程,先找前k-2数,第一层前k-2数是空集,那么第一层所有的频繁项集都可以排列组合进行合并成第二层。但是到了第二层,前k-2个数相等的只有{0,1}和{0,2}了,所以只能这俩合并,减少了多余计算。根据apriori算法原则,不符合最小支持度的频繁项集在计算支持度时直接被过滤了,所以能进行这步运算的都是过
滤完符合最小支持度的频繁项集。
c.关联规则apriori进行关联分析
频繁项集已经搭建好了,接下来才是数据挖掘的主场部分,开启挖掘机模式。为了简洁地表达挖掘方式,这里用一个频繁项集{0,1,2,3}作为示例。我们依旧用遍历的方法计算所有符合最小可信度的关联关系,与计算频繁项集一样,挖掘依然采用分层方式,见下图。
从图中可以发现:假设规则{0,1,2} ➞ {3}并不满足最小可信度要求,那么就知道任何左部为{0,1,2}子集的规则也不会满足最小可信度要求。如果{0,1,2}➞{3}是一条低可信度规则,那么所有其他以3作为后件(箭头右部包含3)的规则均为低可信度的。当然这两条规则是重复的,我们按照第二条规则编写代码(只用可用后件的并集或‘子集’)。
def generateRules(L,supportData,minconf=0.7): #minconf为可信度
bigrulelist=[] #新建列表用于储存关联信息
for i in range(1,len(L)): #从第二个开始遍历每一个由频繁项集组成的列表
for freqset in L[i]: #从列表里遍历每一个频繁项集
H1=[frozenset([item]) for item in freqset] #对频繁项集里的每个项提出来化为frozenset的形式储存在列表中,如[frozenset([1]),frozenset([2])]
print 'H1:',H1
if (i > 1): #因为第二行的频繁项集里的项都只有2个,所以选择大于二行的进行迭代求解,第一行只有一个直接忽略
H1=clacconf(freqset,H1,supportData,bigrulelist,minconf) #先算第二层匹配
rulesfromconseq(freqset,H1,supportData,bigrulelist,minconf)
else:
clacconf(freqset,H1,supportData,bigrulelist,minconf) #直接求每个频繁项作为后项的可信度,并保留可信度符合要求的项
return bigrulelist
def clacconf(freqset,H,supportData,bigrulelist,minconf): #输入频繁项集如frozenset([0,1]),H值作为后项,形式如[frozenset([0]),frozenset([1])]
returnlist=[]
for conseq in H: #对频繁项集里的每个项都假设是后项,计算该可信度
a=supportData[freqset]/supportData[freqset-conseq]
if a >= minconf: #若该可信度符合要求,则输出该后项
print freqset-conseq,'-->',conseq, 'conf:',a
bigrulelist.append((freqset-conseq,conseq,a))
returnlist.append(conseq)
return returnlist
def rulesfromconseq(freqset,H,supportData,bigrulelist,minconf):
#当频繁项集的内容大于1时,如frozenset([0,1,2,3]),其H值为[frozenset([0]),frozenset([1]),...frozenset([3])]
if len(H) == 0: #如果上一层没有匹配上则H为空集
pass
else:
m=len(H[0]) #计算H值的第一个值的长度
if (len(freqset) > (m+1)): #若freqset的长度大于m+1的长度,则继续迭代
hmp=apriorigen(H,m+1) #将单类别加类别,如{0,1,2}转化为{0,1},{1,2}等
print 'hmp:',hmp
hmp=clacconf(freqset,hmp,supportData,bigrulelist,minconf) #计算可信度
if (len(hmp) > 1): #如果后项的数量大于1,则还有合并的可能,继续递归
rulesfromconseq(freqset,hmp,supportData,bigrulelist,minconf)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06