京公网安备 11010802034615号
经营许可证编号:京B2-20210330
面对数据科学人才的巨大缺口,我们该如何提升自身技能
如今,数据科学家炙手可热。在世界各地,成千上万的学生都在大学或在线课程中选择了数据分析课程。
尽管如此,但数据科学人才数量与市场需求间仍存在很大的缺口。那么对于求职人群来说,该如何提升技能从而获得心仪的工作呢?
市场需求仍然很高
虽然数据科学领域的发展存在一些错误的信息,有报道称该领域的人才数量“ 自2012年以来增长了超过650%”。
但根据LinkedIn 针对美国增长最快的工作发布的2017年新兴工作报告,当中显示“科技领域是当之无愧的王者”,同时机器学习工程师,数据科学家,大数据工程师等职业在各行各业都备受追捧。
该报告还分析了LinkedIn上近五年发布的职位数据,从中发现如今发布的数据科学家职位数量是2012年的6.5倍。而且在新兴职位中最常见的十大技能中,有三个与数据科学直接相关,即Python,软件开发和数据分析。
但有经验的人才并不多
三年前,SAS执行副总裁兼CMO Jim Davis说:“如果你想迅速找到一份工作,那就想办法成为一名数据科学家”。
但问题是,该领域发展得太快了。如今有太多的数据科学家,但他们该领域的经验都不足,而且该行业的专家很少。这意味着,虽然数据科学领域仍然存在机会,但是想要充分利用这一人才缺口,则需要想方设法开拓个人的职业道路并取得领先。
竞争压力大
如今时代变了。当数据科学这个术语还相对仍较新时,公司会聘请那些只有基本数据知识的求职者,并会让他们在工作中学习。但现在,公司只会聘请那些对对编程和统计学有较深入的了解的人才。
市场需求仍然很大,但行业标准更高了。
Umbel高级工程总监Kevin Safford说:“每年,大量来自统计学、计量经济学、自然科学和计算机科学等领域的博士生对学术界没有太大的兴趣,从而选择进入职场。”
这意味着如今求职者必须面对竞争异常激烈的市场。一份在五年前看起来很有吸引力的简历在今天可能不会被通过。
行业现状
新闻博客网站赫芬顿邮报称,目前世界上大约有150万至300万名数据科学家,当中真的没有具有合适经验的求职者吗?
如果我告诉你,造成这种人才缺口负责招聘的人员并不是真正的数据科学家,而是公司的董事,人力资源部门人员呢?
为什么会这样?
事实是,数据科学已经成为一种流行语。5年来,它一直被《哈佛商业评论》认为是“市场上最性感的工作”。现在,公司急于在他们的队伍中加入数据专家。
但真正的问题是,许多公司并不知道数据科学家到底是什么,他们要做什么,如何构建团队,如何发挥数据科学家的真正价值,在对数据科学的认知上存在着巨大的缺口。
市场上存在大量的数据科学家,有成千上万的出色人才,他们能够轻松地提升企业的业务水平,但却很少有机会证明自己。
大多数公司都急于聘请数据方面的专家,他们认为需要一个有5到8年经验的人来解决他们所有的问题,但讽刺的是,这个领域存在的时间可能都没这么长。然后他们得出结论,认为市场上数据科学家的经验都不足,还不够优秀。
机遇
但一味地把责任都归因于对数据科学专业的无知,这是不公平的。数据科学家本身也有责任。
人力资源部门可能还以传统的方式进行招聘,因此面对这些新兴职位,在招聘时遇到问题也不足为奇。
数据是商业的未来,这是不可避免的。因此,数据科学家需要展示自身的优势和能力,以及能够带来的价值。
那么,数据科学家应该怎么提升自身技能呢?
如何提升技能
所有公司都希望他们的数据科学家能够解决实际问题,更理想的是,能够表达出他们的发现。因此,如果我们能用数据回答实际业务问题,那么我们将更有机会获得理想的工作。
但为此,我们需要经验和知识。成为一名炙手可热的数据科学家没有捷径可走。
我们可以通过以下六种方式提升自身的技能:
1. 了解数据科学领域
每个领域都需要数据科学家。
销售公司想知道,他们该如何定制营销活动,从而定位合适的客户群;金融公司想通过历史数据来帮助他们降低风险;游戏公司想知道,采取哪些措施能增加忠实玩家的数量;政府机构想知道,该如何把智能技术应用到城市建设。
你越了解某个领域,就越有可能成功管理该领域的数据。如果你不了解金融业的运作方式,那么在银行担任数据科学家就毫无意义。
2. 学习相关课程
数据科学每天都在飞速发展,这意味着你也必须不断进步。在今天很关键的内容,也许在明天就无足轻重了。因此,要想在数据科学领域保持竞争力,即必须不断学习,提升自身技能。
无论是在线还是线下课程,有良好声誉的数据科学课程都是获得基础数据科学知识的最佳途径。
3. 找导师
在职业道路中,当遇到问题需要寻求建议时,求助导师是不错的方法。许多资深的数据科学家很乐意培养有前途的职场新人,他们愿意向他人提供建议和想法。
4. 关注行业动态
如果你没有听说过数据=速度,那么你就落后了。
数据发展迅速,数百人正在开展数千个项目。也许那个你一直在努力解决某个问题已经被其他人解决了。
作为以成员间合作为前提的领域,数据科学不断从他人工作中收益,并让每个人都能发挥自己最大的价值。
因此,时刻关注行业动态和前沿信息是至关重要的。
5. 选择合适的公司
数据科学吸引了媒体的大量关注,因为通过数据科学公司能够收集大量的数据,但同时这也是一把双刃剑,大多数公司仍然不知道他们需要什么样的人才。
为了避免进入对自身认识不够的公司,需要注意的是:如果企业在求职信息中列出一长串需要求职者掌握的技能和软件,这只体现出该企业对自身的数据策略很不了解,他们认为招聘任何一位数据科学家就能解决他们所有的数据问题。
6. 结识新朋友
如果你真的想成为一名数据科学家,要记住数据科学最终是一个社会领域。通过社交网络认识其他的数据科学家是很重要的,Twitter、LinkedIn或Reddit都是不错的选择。
结语
充分利用数据才能够让企业处于不败之地。如今我们在日常生活中会用到大量的技术,比如智能设备,社交网络,互联网搜索等都会源源不断地产生更多数据。人们需要管理越来越多的数据,因此数据科学领域仍有很大的市场需求,而且该领域相对安全,不容易受到自动化的影响。
的确,数据科学领域的竞争更加激烈,但是只要付出努力,不断提升自己,你仍然很有可能成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19