支持向量机算法在深度学习没有火起来的2012年前,在机器学习算法中可谓是霸主地位,其思想是在二分类或者多分类任务中,将类别分开的超平面可能有很多种,那么哪一种的分类效果是最好的呢?这里引入了支撑向量的概念,我们总可以在几个类别的分界面处找到类别的一些样本点,以这些样本点的中垂线为平面的这个分界面可以使得类别中的点都离分界面足够远,那么这个平面就是最理想的分割超平面。
注意:SVM顾名思义,该算法只用到了一些支撑样本将两类或者多类样本分开的~~
SVM分为线性可分SVM,线性SVM和非线性SVM,后两者用到了核函数。
一、SVM中的数学:
1.凸优化
2.核函数
3.拉格朗日乘子法
二、SVM公式推导
基本定义(以二分类为例):
分割平面:是特征空间转换函数,简单地,
目标值属于{-1,1},通过sign(y(x))将样本分类为1或者-1
1.线性可分SVM(样本本身线性可分)
1.1 目标函数:遍历所有的x,对离分割面最近的x中,找到一组w,b,使得离该线最近的x到该直线的距离最大
变形达到:
整理在得到最终的目标函数:
1.2 求解目标函数,引入拉格朗日乘子法和KKT条件:
上式分别对w,b求导为0,并代入原式中,变形为求解alpha的约束最优化问题:
最终得到的w,b以及超平面分别是:
2.线性支持SVM(样本本身线性不可分)
2.1 引入松弛因子,目标函数和约束条件变为:
给定松弛因子,相当于引入了正则项,C->无穷大,相当于没有惩罚,所有样本眼分对,不容忍错误,容易overfitting,C->0,则过渡带宽,容忍有错误,model范化能力好,能防止overfitting
2.2 求解目标函数,仍用拉格朗日乘子法,,最终的目标函数为:
求解最优的alpha,并求得w和b.
3.非线性SVM,引入核函数
3.1 思想:不可分的样本,通过核函数映射到新的高维特征空间,使得样本变得可分,常见的核函数有多项式,高斯和sigmoid核函数,公式如下:
一般地,在不知道更多信息的时候使用高斯核函数是最稳妥的,高斯函数(RBF,径向基函数)是一个映射到无穷维的函数。
引入的代表了核函数映射到高维空间的胖瘦,其值大,则胖乎乎,其值小,则瘦兮兮~~
三、代码实现SVM
import numpy as np
from sklearn.svm import SVR
from sklearn.grid_search import GridSearchCV # 0.17 grid_search
import matplotlib.pyplot as plt
if __name__ == "__main__":
N = 50
np.random.seed(0)
x = np.sort(np.random.uniform(0, 6, N), axis=0)
y = 2*np.cos(x) + 0.1*np.random.randn(N)
x = x.reshape(-1, 1)
model = SVR(kernel='rbf')
c = np.logspace(-2, 2, 10)
gamma= np.logspace(-2, 2, 10)
svr = GridSearchCV(model, param_grid={'C': c, 'gamma': gamma}, cv=5)
svr.fit(x, y)
print 'C和gamma的最优参数:\n', svr.best_params_
x_test = np.linspace(x.min(), x.max(), 100).reshape(-1, 1)
y_predict = svr.predict(x_test)
sp = svr.best_estimator_.support_
plt.figure(facecolor='w')
plt.scatter(x[sp], y[sp], c='b', marker='o', label='Support Vectors')
plt.plot(x_test, y_predict, 'r--',label='RBF Kernel')
plt.plot(x, y, 'g-')
plt.legend(loc='best')
plt.title('SVR with grid_search C & gamma')
plt.xlabel('X')
plt.ylabel('Y')
plt.grid(True)
plt.tight_layout()
plt.show()
运行代码可以网格搜索到最优的Chegamma并得到SVM的结果可视化如下:
总结一下:
1.SVM中有两个超参数需要调参,一个是C,一个是,在不知道这两者怎么搭配最终的分类效果好,使用高斯函数(RBF)是最好的,可以用grid_search来找最优的一组值超参数,而不是随便
调参
2. 某一种模型调参的能力是有限的,不会对分类结果有质的飞跃,当怎么调都调不好的话,就应该考虑换一种模型了
3. 调参不是主要的,特征选择和数据的清洗对模型的结果影响更重要
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11