支持向量机算法在深度学习没有火起来的2012年前,在机器学习算法中可谓是霸主地位,其思想是在二分类或者多分类任务中,将类别分开的超平面可能有很多种,那么哪一种的分类效果是最好的呢?这里引入了支撑向量的概念,我们总可以在几个类别的分界面处找到类别的一些样本点,以这些样本点的中垂线为平面的这个分界面可以使得类别中的点都离分界面足够远,那么这个平面就是最理想的分割超平面。
注意:SVM顾名思义,该算法只用到了一些支撑样本将两类或者多类样本分开的~~
SVM分为线性可分SVM,线性SVM和非线性SVM,后两者用到了核函数。
一、SVM中的数学:
1.凸优化
2.核函数
3.拉格朗日乘子法
二、SVM公式推导
基本定义(以二分类为例):
分割平面:是特征空间转换函数,简单地,
目标值属于{-1,1},通过sign(y(x))将样本分类为1或者-1
1.线性可分SVM(样本本身线性可分)
1.1 目标函数:遍历所有的x,对离分割面最近的x中,找到一组w,b,使得离该线最近的x到该直线的距离最大
变形达到:
整理在得到最终的目标函数:
1.2 求解目标函数,引入拉格朗日乘子法和KKT条件:
上式分别对w,b求导为0,并代入原式中,变形为求解alpha的约束最优化问题:
最终得到的w,b以及超平面分别是:
2.线性支持SVM(样本本身线性不可分)
2.1 引入松弛因子,目标函数和约束条件变为:
给定松弛因子,相当于引入了正则项,C->无穷大,相当于没有惩罚,所有样本眼分对,不容忍错误,容易overfitting,C->0,则过渡带宽,容忍有错误,model范化能力好,能防止overfitting
2.2 求解目标函数,仍用拉格朗日乘子法,,最终的目标函数为:
求解最优的alpha,并求得w和b.
3.非线性SVM,引入核函数
3.1 思想:不可分的样本,通过核函数映射到新的高维特征空间,使得样本变得可分,常见的核函数有多项式,高斯和sigmoid核函数,公式如下:
一般地,在不知道更多信息的时候使用高斯核函数是最稳妥的,高斯函数(RBF,径向基函数)是一个映射到无穷维的函数。
引入的代表了核函数映射到高维空间的胖瘦,其值大,则胖乎乎,其值小,则瘦兮兮~~
三、代码实现SVM
import numpy as np
from sklearn.svm import SVR
from sklearn.grid_search import GridSearchCV # 0.17 grid_search
import matplotlib.pyplot as plt
if __name__ == "__main__":
N = 50
np.random.seed(0)
x = np.sort(np.random.uniform(0, 6, N), axis=0)
y = 2*np.cos(x) + 0.1*np.random.randn(N)
x = x.reshape(-1, 1)
model = SVR(kernel='rbf')
c = np.logspace(-2, 2, 10)
gamma= np.logspace(-2, 2, 10)
svr = GridSearchCV(model, param_grid={'C': c, 'gamma': gamma}, cv=5)
svr.fit(x, y)
print 'C和gamma的最优参数:\n', svr.best_params_
x_test = np.linspace(x.min(), x.max(), 100).reshape(-1, 1)
y_predict = svr.predict(x_test)
sp = svr.best_estimator_.support_
plt.figure(facecolor='w')
plt.scatter(x[sp], y[sp], c='b', marker='o', label='Support Vectors')
plt.plot(x_test, y_predict, 'r--',label='RBF Kernel')
plt.plot(x, y, 'g-')
plt.legend(loc='best')
plt.title('SVR with grid_search C & gamma')
plt.xlabel('X')
plt.ylabel('Y')
plt.grid(True)
plt.tight_layout()
plt.show()
运行代码可以网格搜索到最优的Chegamma并得到SVM的结果可视化如下:
总结一下:
1.SVM中有两个超参数需要调参,一个是C,一个是,在不知道这两者怎么搭配最终的分类效果好,使用高斯函数(RBF)是最好的,可以用grid_search来找最优的一组值超参数,而不是随便 调参
2. 某一种模型调参的能力是有限的,不会对分类结果有质的飞跃,当怎么调都调不好的话,就应该考虑换一种模型了
3. 调参不是主要的,特征选择和数据的清洗对模型的结果影响更重要
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31