
支持向量机算法在深度学习没有火起来的2012年前,在机器学习算法中可谓是霸主地位,其思想是在二分类或者多分类任务中,将类别分开的超平面可能有很多种,那么哪一种的分类效果是最好的呢?这里引入了支撑向量的概念,我们总可以在几个类别的分界面处找到类别的一些样本点,以这些样本点的中垂线为平面的这个分界面可以使得类别中的点都离分界面足够远,那么这个平面就是最理想的分割超平面。
注意:SVM顾名思义,该算法只用到了一些支撑样本将两类或者多类样本分开的~~
SVM分为线性可分SVM,线性SVM和非线性SVM,后两者用到了核函数。
一、SVM中的数学:
1.凸优化
2.核函数
3.拉格朗日乘子法
二、SVM公式推导
基本定义(以二分类为例):
分割平面:是特征空间转换函数,简单地,
目标值属于{-1,1},通过sign(y(x))将样本分类为1或者-1
1.线性可分SVM(样本本身线性可分)
1.1 目标函数:遍历所有的x,对离分割面最近的x中,找到一组w,b,使得离该线最近的x到该直线的距离最大
变形达到:
整理在得到最终的目标函数:
1.2 求解目标函数,引入拉格朗日乘子法和KKT条件:
上式分别对w,b求导为0,并代入原式中,变形为求解alpha的约束最优化问题:
最终得到的w,b以及超平面分别是:
2.线性支持SVM(样本本身线性不可分)
2.1 引入松弛因子,目标函数和约束条件变为:
给定松弛因子,相当于引入了正则项,C->无穷大,相当于没有惩罚,所有样本眼分对,不容忍错误,容易overfitting,C->0,则过渡带宽,容忍有错误,model范化能力好,能防止overfitting
2.2 求解目标函数,仍用拉格朗日乘子法,,最终的目标函数为:
求解最优的alpha,并求得w和b.
3.非线性SVM,引入核函数
3.1 思想:不可分的样本,通过核函数映射到新的高维特征空间,使得样本变得可分,常见的核函数有多项式,高斯和sigmoid核函数,公式如下:
一般地,在不知道更多信息的时候使用高斯核函数是最稳妥的,高斯函数(RBF,径向基函数)是一个映射到无穷维的函数。
引入的代表了核函数映射到高维空间的胖瘦,其值大,则胖乎乎,其值小,则瘦兮兮~~
三、代码实现SVM
import numpy as np
from sklearn.svm import SVR
from sklearn.grid_search import GridSearchCV # 0.17 grid_search
import matplotlib.pyplot as plt
if __name__ == "__main__":
N = 50
np.random.seed(0)
x = np.sort(np.random.uniform(0, 6, N), axis=0)
y = 2*np.cos(x) + 0.1*np.random.randn(N)
x = x.reshape(-1, 1)
model = SVR(kernel='rbf')
c = np.logspace(-2, 2, 10)
gamma= np.logspace(-2, 2, 10)
svr = GridSearchCV(model, param_grid={'C': c, 'gamma': gamma}, cv=5)
svr.fit(x, y)
print 'C和gamma的最优参数:\n', svr.best_params_
x_test = np.linspace(x.min(), x.max(), 100).reshape(-1, 1)
y_predict = svr.predict(x_test)
sp = svr.best_estimator_.support_
plt.figure(facecolor='w')
plt.scatter(x[sp], y[sp], c='b', marker='o', label='Support Vectors')
plt.plot(x_test, y_predict, 'r--',label='RBF Kernel')
plt.plot(x, y, 'g-')
plt.legend(loc='best')
plt.title('SVR with grid_search C & gamma')
plt.xlabel('X')
plt.ylabel('Y')
plt.grid(True)
plt.tight_layout()
plt.show()
运行代码可以网格搜索到最优的Chegamma并得到SVM的结果可视化如下:
总结一下:
1.SVM中有两个超参数需要调参,一个是C,一个是,在不知道这两者怎么搭配最终的分类效果好,使用高斯函数(RBF)是最好的,可以用grid_search来找最优的一组值超参数,而不是随便
调参
2. 某一种模型调参的能力是有限的,不会对分类结果有质的飞跃,当怎么调都调不好的话,就应该考虑换一种模型了
3. 调参不是主要的,特征选择和数据的清洗对模型的结果影响更重要
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09