
花式玩逻辑回归之不是只能做二分类
最近忙了一些,懒也有啦,就没怎么看书,发现一些新的东西,所以更新慢了,之前有个朋友叫我写避免过拟合,但是这个题目真的好广泛,我还没看透,所以这个可能后续再写,今天我们来写个关于逻辑回归的话题。
其实大部分的时候,使用逻辑回归都是处理二分类的问题,那是因为在信用评分卡中,都是认好客户和坏客户,但是在其他的建模场景中还是存在多分类的情况的,例如你想建立一些用户标签,区分使用你在库客户的一些行为特征或者给他们加个标签,更好的建立模型,那么建模中的多分类的话,可能会用神经网络去区分多分类,但是除了神经网络,我们万能的逻辑回归也可以。
介绍两种把逻辑回归变成多分类算法的思路,绝对不是那个多分类的逻辑回归那个算法,底层还是那个二分类的逻辑回归。
1
哑变量式法
平时如果逻辑回归不转化woe的话,字符变量就是以哑变量的形式进入模型的,那么现在我们也可以把我们的多分类变成哑变量的形式建立多个模型。
步骤一:
假设现在是有4个分类,A-B-C-D,现在建立四个模型,这四个模型的Y值是这么设置的:
A 为Y值等于1 |
B C D 为Y值等于0 |
F1(X) |
B 为Y值等于1 |
A C D 为Y值等于0 |
F2(X) |
C 为Y值等于1 |
A B D 为Y值等于0 |
F3(X) |
D 为Y值等于1 |
A B C 为Y值等于0 |
F4(X) |
分别建立了四个模型,这里你可以用全部的数据分成四份,分别建立四个模型,但是如果你数据少的话,其实我觉得你用同个全样本数据做四个模型。
步骤二:这四个模型分别拟合建立模型,生成这四个模型的标准卡
步骤三:部署应用的就是,客户的全部维度跑四个模型,取预测概率最高的那个即为是哪一类,即max(p(f1(x)), p(f2(x)), p(f3(x)), p(f4(x)))。
2
投票式
还是例如是四个标签,A-B-C-D,这个方法的思路是:
步骤一:
取标签A,C的数据,分别为1,0 |
F1(X) |
取标签A,B的数据,分别为1,0 |
F2(X) |
取标签A,D的数据,分别为1,0 |
F3(X) |
取标签B,C的数据,分别为1,0 |
F4(X) |
取标签C,D的数据,分别为1,0 |
F5(X) |
取标签B,D的数据,分别为1,0 |
F6(X) |
这时候你需要建立是6个模型,每个模型选取的数据是样本中对应标签的数据。
步骤二:分别拟合建立6个模型,并生成6个模型的标准评分卡。
步骤三:部署应用是这样子的:
当一个客户进来的时候:跑第一个模型,预设一个阈值,如果超过阈值则为A,小于阈值就是C,依次算出6个模型的预测标签,预测标签就是这6个模型的最高票。
3
空间距离法
这个方法在西瓜书的65页有详细的介绍,如果你看不懂我写的,你可以去看一下西瓜书的65页-67页的内容。这个方法我是自己看了之后,按照自己的理解再加点一个改动。
这个方法有点麻烦哈,就是你建立多少个模型都可以。
步骤一:你的Y值中的1可以是A 也可以是AB 0是CD ,然后你随机的让一个或者几个标签作为y值中的1,剩下的一个标签作为y值的0,那么你就可以得到以下的矩阵。F1(X),就是A标签为目标标签,剩下则为非目标标签,以此类推
|
F1(X) |
F2(X) |
F3(X) |
F4(X) |
F5(X) |
F6(X) |
F7(X) |
A |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
B |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
C |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
D |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
步骤二:就是你根据的y值取目标标签为1,然后进行建模,分别建立7个模型。这个我建立的模型对D不太公平,正常的话应该是每个标签的做目标标签的次数应该是跟非目标的次数是一样的,但是这个没那么宽,我就列举了一下。
步骤三:部署的时候就是这样子,你的客户维度跑了全部的模型,模型会有一个阈值,那么大于这个阈值就是目标标签,小于阈值就是非目标标签。那么如果想F2(X)这种,大于阈值,那他可能是A标签也可能是B标签,这时候就不好判断了,所以这之后按照空间距离的公司,算出客户预测标签组成一个向量,与A B C D的各个模型的作为目标变量组成的向量,计算预测标签向量与标签向量之间的欧式距离,距离最小的,即预测标签为其标签,我举个例子:
例如有个客户数据是(1,0,0,0,1,0,1),那么他与A B C D欧式距离就是分别是:
那么这个客户的预测标签就是4。我这欧式距离是手算,要是有错的告诉我一下哈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05