 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		你知道SAS也可以实现神经网络吗
神经网络的理论太长了,我就不写上来了,本次的代码是根据这本书《数据挖掘与应用》--张俊妮中神经网络这一章我做了思路的改动以及在原本代码的基础上,我把它封装好变成一个完整的宏。如果后面你们需要去了解sas神经网络这个proc neural过程也可以去购买这本来读,这本书没有配套的代码,所以代码也是我一个一个照着书敲来之后更改的。
说下这个代码的思路。
1、宏的第一步是采用神经网络建立广义线性模型,没有隐藏层,对数据做第一次的训练。这里的数据宏里面已经自动拆分成测试和训练了,你自己不用拆了。
2、算出神经网络建立广义线性模型的结果算出原始数据(训练集以及测试集)中每一个,客户的违约概率,之后算其ks值。
3、接下来就是循环隐藏层,从1循环到3,当然你要是觉得3层太少,你可以再设置,使用的是早停止(张俊妮的《数据挖掘与应用》的114页种有详细解释这个算法)法建立多层感知模型,那么这里第一次当然循环就是1层啦,那就是1层感知模型。
4、在当隐藏层为一层的时候,我们会拟合两次神经网络,第一次不输出结果,只是产出在隐藏层为一层的时候,挑选出最优的变量权重,拟合一个使用早停止法拟合出来的一个隐藏层为一层的神经网络模型,利用出来的变量规则,算出客户的概率之后算出模型的ks值。
5、到这里并不是要循环隐藏层为两层,还有呢,别着急,这时候隐藏层为一层的前提下,再使用,规则化法建模一层感知器模型,刚才的一层隐藏层使用的早停止法,现在使用的是规则化法,这时候规则化法去的权衰减常数的四种取值(规则化法也可以在书里的115页看到。)四种取值是:0.1 、0.01、0.001、0.0001然后循环之后算出,每个模型的ks记录。
6、所以循环一次隐藏层的层数,是得到4个模型的,早停止法一个,规则化法四个。
7、再一次循环隐藏层的2、3层。最终你可以在ks的汇总跑那个表中,选出训练数据以及测试数据ks都高的模型,作为你最终的模型。
%macromlps(dir,data,list_varname,y_var);
proc datasets lib=work;
delete alltrainfit allvalidfit vaild_ks_total train_ks_total;
run;
data M_CALL_DAY_TOTAL4_t;
set &data.;
indic=_n_;
run;
Proc sort data=M_CALL_DAY_TOTAL4_t; by &y_var.;run;
proc surveyselect data =M_CALL_DAY_TOTAL4_t method = srs rate=0.8
out = traindata;
strata &y_var.;
run;
proc sql;
create table validdata as
select * from
M_CALL_DAY_TOTAL4_t where indic not in (select indic from traindata);
quit;
data traindata;
set traindata;
drop SelectionProb SamplingWeight indic;
run;
data validdata;
set validdata;
drop indic;
run;
proc dmdb data=traindata dmdbcat=dmcdata;
class &y_var.;
var &list_varname.;
run;
proc dmdb data=validdata dmdbcat=dmcdata;
class &y_var.;
var &list_varname.;
run;
data decisionmatrix;
&y_var.=1;
to_1=0;
to_2=1;
output;
&y_var.=0;
to_1=1;
to_2=0;
output;
run;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata ranscale=0.1random=0;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi glim;
nloptions maxiter=300;
train ;
code file="&dir.nncode_germancredit_glim.sas";
score data=traindata nodmdb out=traindata_GLIM outfit=trainfit_GLIM role=TRAIN;
score data=validdata nodmdb out=validdata_GLIM outfit=validfit_GLIM role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_glim.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="glim";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_glim.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="glim";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letnhidden=1;
%do%until(&nhidden.>3);
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
nloptions maxiter=300;
train estiter=1outest=weights_MLP&nhidden._ES outfit=assessment_MLP&&nhidden._ES;
/*code file="&dir.nncode_germancredit_glim.sas";*/
/*score data=traindata nodmdb out=traindata_GLIM outfit=trainfit_GLIM role=TRAIN;*/
/*score data=validdata nodmdb out=validdata_GLIM outfit=validfit_GLIM role=valid;*/
run;
proc sort data=assessment_MLP&&nhidden._ES;
by _VALOSS_;
RUN;
DATA BESTITER;
SET assessment_MLP&&nhidden._ES;
IF _N_=1;
RUN;
proc sql;
select _iter_ into:BESTITER from BESTITER;
quit;
data bestweights;
set weights_MLP&nhidden._ES;
if _type_="PARMS"AND _iter_=&bestiter.;
drop _tech_ _type_ _name_ _decay_ _seed_ _nobj_ _obj_ _objerr_
_averr_ _vnobj_ _vobj_ _vobjerr_ _vaverr_ _p_num_ _iter_;
run;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
initial inest=bestweights;
train tech=none;
code file="&dir.nncode_germancredit_MLP&nhidden._ES.sas";
score data=traindata nodmdb out=traindata_MLP&Nhidden._ES outfit=trainfit_MLP&Nhidden._ES role=TRAIN;
score data=validdata nodmdb out=validdata_MLP&Nhidden._ES outfit=validfit_MLP&Nhidden._ES role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_MLP&nhidden._ES.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="ES";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_MLP&nhidden._ES.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS
p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="ES";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letidecay=1;
%do%until(&idecay.>4);
%if&idecay.=1%then%letcedcay=0.1;
%else%if&idecay.=2%then%letcedcay=0.01;
%else%if&idecay.=3%then%letcedcay=0.001;
%else%if&idecay.=4%then%letcedcay=0.0001;
%put&cedcay.;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
netoptions decay=&cedcay.;
nloptions maxiter=300;
prelim5maxiter=10;
train ;
code file="&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
score data=traindata nodmdb out=traindata_MLP&Nhidden._WD&idecay.outfit=trainfit_MLP&Nhidden._WD&idecay.role=TRAIN;
score data=validdata nodmdb out=validdata__MLP&Nhidden._WD&idecay.outfit=validfit_MLP&Nhidden._WD&idecay.role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="&nhidden._WD&idecay.";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS
p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="&nhidden._WD&idecay.";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letidecay=%eval(&idecay.+1);
%end;
%letnhidden=%eval(&nhidden.+1);
%end;
%mend;
/*%mlps();*/
%letlist_varname=%str(N_M5_T09_CONRT N_M6_T09_CINRT N_N5_T82_COC_RC N_M5_T03_CONRT N_M3_T10_CONRC N_M3_T83_COC_RC
N_M3_T09_CINRTN_M6_T83_COT_RC N_M3_T83_CIT_RC N_M2_T10_CONRC N_M5_T03_CINRM N_M5_T10_CONRC N_M4_T02_CONRC N_M1_T08_CONRM
N_M3_T06_CINRM N_M2_T09_CONRT N_M6_T03_CONRT N_M5_T07_CINR );
%mlps(dir=F:data_1,data=raw.CALL_HOUR2_total7_woe,list_varname=&list_varname.,y_var=y);
最终的宏里面的list_vaname就不用填了,让他引用上面的宏list_vaname就可以了,list_vaname填的是你要去建立神经网络的变量,这里提醒一句哈,就是我尝试了不分组,分20组,分10组,分5组的效果,我建议是将变量分组好之后再丢进去比较好,但是我说不准到底是几组好,毕竟我和你的数据不一样。
data填的原始数据集。dir,填一个路径,这个路径存放的是最终的模型输出的规则,跟决策树那个score一个道理的。y_var填的是你的因变量。
最后看下你们最终要看的结果图长什么样子:
	 
 
主要是要看这两个数据集的,这两个数据集长这样子:
	 
 
ks值每个模型的ks值,p值是ks的p值,model对应的是哪个模型,GLIM是哪个广义线性模型,1_WD1代表的是隐藏层为1,权衰减为0.1对应的模型,在1_WD1,代表的隐藏层为1的时候对应的早停止发的模型,在2_WD1,代表的隐藏层为2的时候对应的早停止发的模型,找出你喜欢模型之后,去路径下面找规则代码就可以了。如果实在是这个代码格式跟你的sas不符的,可以在后台跟我要下txt的格式的代码。
	
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23