
你知道SAS也可以实现神经网络吗
神经网络的理论太长了,我就不写上来了,本次的代码是根据这本书《数据挖掘与应用》--张俊妮中神经网络这一章我做了思路的改动以及在原本代码的基础上,我把它封装好变成一个完整的宏。如果后面你们需要去了解sas神经网络这个proc neural过程也可以去购买这本来读,这本书没有配套的代码,所以代码也是我一个一个照着书敲来之后更改的。
说下这个代码的思路。
1、宏的第一步是采用神经网络建立广义线性模型,没有隐藏层,对数据做第一次的训练。这里的数据宏里面已经自动拆分成测试和训练了,你自己不用拆了。
2、算出神经网络建立广义线性模型的结果算出原始数据(训练集以及测试集)中每一个,客户的违约概率,之后算其ks值。
3、接下来就是循环隐藏层,从1循环到3,当然你要是觉得3层太少,你可以再设置,使用的是早停止(张俊妮的《数据挖掘与应用》的114页种有详细解释这个算法)法建立多层感知模型,那么这里第一次当然循环就是1层啦,那就是1层感知模型。
4、在当隐藏层为一层的时候,我们会拟合两次神经网络,第一次不输出结果,只是产出在隐藏层为一层的时候,挑选出最优的变量权重,拟合一个使用早停止法拟合出来的一个隐藏层为一层的神经网络模型,利用出来的变量规则,算出客户的概率之后算出模型的ks值。
5、到这里并不是要循环隐藏层为两层,还有呢,别着急,这时候隐藏层为一层的前提下,再使用,规则化法建模一层感知器模型,刚才的一层隐藏层使用的早停止法,现在使用的是规则化法,这时候规则化法去的权衰减常数的四种取值(规则化法也可以在书里的115页看到。)四种取值是:0.1 、0.01、0.001、0.0001然后循环之后算出,每个模型的ks记录。
6、所以循环一次隐藏层的层数,是得到4个模型的,早停止法一个,规则化法四个。
7、再一次循环隐藏层的2、3层。最终你可以在ks的汇总跑那个表中,选出训练数据以及测试数据ks都高的模型,作为你最终的模型。
%macromlps(dir,data,list_varname,y_var);
proc datasets lib=work;
delete alltrainfit allvalidfit vaild_ks_total train_ks_total;
run;
data M_CALL_DAY_TOTAL4_t;
set &data.;
indic=_n_;
run;
Proc sort data=M_CALL_DAY_TOTAL4_t; by &y_var.;run;
proc surveyselect data =M_CALL_DAY_TOTAL4_t method = srs rate=0.8
out = traindata;
strata &y_var.;
run;
proc sql;
create table validdata as
select * from
M_CALL_DAY_TOTAL4_t where indic not in (select indic from traindata);
quit;
data traindata;
set traindata;
drop SelectionProb SamplingWeight indic;
run;
data validdata;
set validdata;
drop indic;
run;
proc dmdb data=traindata dmdbcat=dmcdata;
class &y_var.;
var &list_varname.;
run;
proc dmdb data=validdata dmdbcat=dmcdata;
class &y_var.;
var &list_varname.;
run;
data decisionmatrix;
&y_var.=1;
to_1=0;
to_2=1;
output;
&y_var.=0;
to_1=1;
to_2=0;
output;
run;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata ranscale=0.1random=0;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi glim;
nloptions maxiter=300;
train ;
code file="&dir.nncode_germancredit_glim.sas";
score data=traindata nodmdb out=traindata_GLIM outfit=trainfit_GLIM role=TRAIN;
score data=validdata nodmdb out=validdata_GLIM outfit=validfit_GLIM role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_glim.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="glim";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_glim.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="glim";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letnhidden=1;
%do%until(&nhidden.>3);
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
nloptions maxiter=300;
train estiter=1outest=weights_MLP&nhidden._ES outfit=assessment_MLP&&nhidden._ES;
/*code file="&dir.nncode_germancredit_glim.sas";*/
/*score data=traindata nodmdb out=traindata_GLIM outfit=trainfit_GLIM role=TRAIN;*/
/*score data=validdata nodmdb out=validdata_GLIM outfit=validfit_GLIM role=valid;*/
run;
proc sort data=assessment_MLP&&nhidden._ES;
by _VALOSS_;
RUN;
DATA BESTITER;
SET assessment_MLP&&nhidden._ES;
IF _N_=1;
RUN;
proc sql;
select _iter_ into:BESTITER from BESTITER;
quit;
data bestweights;
set weights_MLP&nhidden._ES;
if _type_="PARMS"AND _iter_=&bestiter.;
drop _tech_ _type_ _name_ _decay_ _seed_ _nobj_ _obj_ _objerr_
_averr_ _vnobj_ _vobj_ _vobjerr_ _vaverr_ _p_num_ _iter_;
run;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
initial inest=bestweights;
train tech=none;
code file="&dir.nncode_germancredit_MLP&nhidden._ES.sas";
score data=traindata nodmdb out=traindata_MLP&Nhidden._ES outfit=trainfit_MLP&Nhidden._ES role=TRAIN;
score data=validdata nodmdb out=validdata_MLP&Nhidden._ES outfit=validfit_MLP&Nhidden._ES role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_MLP&nhidden._ES.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="ES";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_MLP&nhidden._ES.sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS
p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="ES";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letidecay=1;
%do%until(&idecay.>4);
%if&idecay.=1%then%letcedcay=0.1;
%else%if&idecay.=2%then%letcedcay=0.01;
%else%if&idecay.=3%then%letcedcay=0.001;
%else%if&idecay.=4%then%letcedcay=0.0001;
%put&cedcay.;
proc neural data=traindata validdata=validdata dmdbcat=dmcdata graph;
input &list_varname./level=int;
target &y_var./level=nom;
decision decdata=decisionmatrix(type=loss) decvars=TO_1 TO_2;
archi MLP hidden=&nhidden.;
netoptions decay=&cedcay.;
nloptions maxiter=300;
prelim5maxiter=10;
train ;
code file="&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
score data=traindata nodmdb out=traindata_MLP&Nhidden._WD&idecay.outfit=trainfit_MLP&Nhidden._WD&idecay.role=TRAIN;
score data=validdata nodmdb out=validdata__MLP&Nhidden._WD&idecay.outfit=validfit_MLP&Nhidden._WD&idecay.role=valid;
run;
data test_train(keep=appl_id &y_var.point);
set traindata;
%include"&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
rename P_&y_var.0=point;
run;
proc npar1way data=test_train noprint;
class &y_var.;
var point;
output out=ks_t(keep=_d_ p_ksa rename=(_d_=KS p_ksa=P_value));
run;
data test_train_ks;
set ks_t;
length model$50.;
model="&nhidden._WD&idecay.";
run;
proc append base=train_ks_total data=test_train_ks force;
run;
data vaild_train(keep=appl_id &y_var.point);
set validdata;
%include"&dir.nncode_germancredit_MLP&nhidden._WD&idecay..sas";
rename P_&y_var.0=point;
run;
proc npar1way data=vaild_train noprint;
class &y_var.;
var point;
output out=ks_v(keep=_d_ p_ksa rename=(_d_=KS
p_ksa=P_value));
run;
data test_vaild_ks;
set ks_v;
length model$50.;
model="&nhidden._WD&idecay.";
run;
proc append base=vaild_ks_total data=test_vaild_ks force;
run;
%letidecay=%eval(&idecay.+1);
%end;
%letnhidden=%eval(&nhidden.+1);
%end;
%mend;
/*%mlps();*/
%letlist_varname=%str(N_M5_T09_CONRT N_M6_T09_CINRT N_N5_T82_COC_RC N_M5_T03_CONRT N_M3_T10_CONRC N_M3_T83_COC_RC
N_M3_T09_CINRTN_M6_T83_COT_RC N_M3_T83_CIT_RC N_M2_T10_CONRC N_M5_T03_CINRM N_M5_T10_CONRC N_M4_T02_CONRC N_M1_T08_CONRM
N_M3_T06_CINRM N_M2_T09_CONRT N_M6_T03_CONRT N_M5_T07_CINR );
%mlps(dir=F:data_1,data=raw.CALL_HOUR2_total7_woe,list_varname=&list_varname.,y_var=y);
最终的宏里面的list_vaname就不用填了,让他引用上面的宏list_vaname就可以了,list_vaname填的是你要去建立神经网络的变量,这里提醒一句哈,就是我尝试了不分组,分20组,分10组,分5组的效果,我建议是将变量分组好之后再丢进去比较好,但是我说不准到底是几组好,毕竟我和你的数据不一样。
data填的原始数据集。dir,填一个路径,这个路径存放的是最终的模型输出的规则,跟决策树那个score一个道理的。y_var填的是你的因变量。
最后看下你们最终要看的结果图长什么样子:
主要是要看这两个数据集的,这两个数据集长这样子:
ks值每个模型的ks值,p值是ks的p值,model对应的是哪个模型,GLIM是哪个广义线性模型,1_WD1代表的是隐藏层为1,权衰减为0.1对应的模型,在1_WD1,代表的隐藏层为1的时候对应的早停止发的模型,在2_WD1,代表的隐藏层为2的时候对应的早停止发的模型,找出你喜欢模型之后,去路径下面找规则代码就可以了。如果实在是这个代码格式跟你的sas不符的,可以在后台跟我要下txt的格式的代码。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03