京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1. 神经网络
这是一个常见的神经网络的图:

这是一个常见的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer
L3是隐含层,当我们输入x1,x2,x3等数据时,通过隐含层的计算、转换,输出你的期望,当你的输入和输出是一样的时候,成为自编码模型(Auto-Encoder),而当你输入和输出是不一致的时候,也就是我们常说的人工神经网络。

2. 如何计算传播
首先我们先构建一个简单的网络层作为例子:
在这个网络层中有
第一层输入层:里面包含神经元i1,i2,截距:b1,权重:w1,w2,w3,w4
第二层是隐含层:里面包含h1,h2,截距:b2,权重:w5,w6,w7,w8
第三层是输出层:里面包含o1,o2
我们使用sigmoid作为激活函数
假定我们输入数据i1: 0.02 i2: 0.04 截距b1:0.4 b2:0.7 期望的输出数据o1:0.5 o2:0.9
未知的是权重w1,w2,w3,w4,w5,w6,w7,w8
我们的目的是为了能的到o1:0.5 o2:0.9的期望的值,计算出w1,w2,w3....w8的权重值
先假如构造一个权重w1,w2,w3.....w8的值,通过计算获取到最佳的w1,w2,w3....w8的权重
权重的初使值:
w1=0.25
w2=0.25
w3=0.15
w4=0.20
w5=0.30
w6=0.35
w7=0.40
w8=0.35
2.1 前向传播
2.1.1 输入层到隐含层
NET(h1)=w1*i1+w2*i2+b1=0.25*0.02+0.25*0.04+0.4=0.005+0.01+0.4=0.415
神经元h1到输出h1的激活函数是sigmoid
OUT(h1)=1/(1+e^(-NET(h1)))=1/(1+0.660340281)=0.602286177
同理我们也可以获取OUT(h2)的值
NET(h2)=w3*i1+w4*i2+b1=0.15*0.02+0.20*0.04+0.4=0.003+0.008+0.4=0.411
OUT(h2)=1/(1+e^(-NET(h2)))=1/(1+0.662986932)=0.601327636
2.1.2 从隐含层到输出层
计算输出层的神经元o1, o2的值,计算方法和输出层到隐含层类似
NET(o1)=w5*h1+w6*h2+b2=0.3*0.602286177+0.35*0.601327636+0.7=0.180685853+0.210464672+0.7=1.091150525
OUT(o1)=1/(1+e^(-NET(o1)))=1/(1+0.335829891)=0.748598311
同理
NET(o2)=w7*h1+w8*h2+b2=0.4*0.602286177+0.35*0.601327636+0.7=0.240914471+0.210464672+0.7=1.151379143
OUT(o2)=1/(1+e^(-NET(o2)))=1/1.316200383=0.759762733
o1:0.748598311 o2:0.759762733 距离我们期望的o1:0.5 o2:0.9还是有很大的距离
2.2 计算总误差



我们来计算每一个公式的偏导:
,则复合函数
的导数
为:



:











数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19