
Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法。一般而言,Pandas 是使 Python 成为强大而高效的数据分析环境的重要因素之一。在本文中,作者从基本数据集读写、数据处理和 DataFrame 操作三个角度展示了 23 个 Pandas 核心方法。
Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。它基于 Cython,因此读取与处理数据非常快,并且还能轻松处理浮点数据中的缺失数据(表示为 NaN)以及非浮点数据。在本文中,基本数据集操作主要介绍了 CSV 与 Excel 的读写方法,基本数据处理主要介绍了缺失值及特征抽取,最后的 DataFrame 操作则主要介绍了函数和排序等方法。
基本数据集操作
(1)读取 CSV 格式的数据集
pd.DataFrame.from_csv(“csv_file”)
或者:
pd.read_csv(“csv_file”)
(2)读取 Excel 数据集
pd.read_excel("excel_file")
(3)将 DataFrame 直接写入 CSV 文件
如下采用逗号作为分隔符,且不带索引:
df.to_csv("data.csv", sep=",", index=False)
(4)基本的数据集特征信息
df.info()
(5)基本的数据集统计信息
print(df.describe())
(6) Print data frame in a table
将 DataFrame 输出到一张表:
print(tabulate(print_table, headers=headers))
当「print_table」是一个列表,其中列表元素还是新的列表,「headers」为表头字符串组成的列表。
(7)列出所有列的名字
df.columns
基本数据处理
(8)删除缺失数据
df.dropna(axis=0, how='any')
返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴,选择 how=「all」会删除所有元素都是 NaN 的给定轴。
(9)替换缺失数据
df.replace(to_replace=None, value=None)
使用 value 值代替 DataFrame 中的 to_replace 值,其中 value 和 to_replace 都需要我们赋予不同的值。
(10)检查空值 NaN
pd.isnull(object)
检查缺失值,即数值数组中的 NaN 和目标数组中的 None/NaN。
(11)删除特征
df.drop('feature_variable_name', axis=1)
axis 选择 0 表示行,选择表示列。
(12)将目标类型转换为浮点型
pd.to_numeric(df["feature_name"], errors='coerce')
将目标类型转化为数值从而进一步执行计算,在这个案例中为字符串。
(13)将 DataFrame 转换为 NumPy 数组
df.as_matrix()
(14)取 DataFrame 的前面「n」行
df.head(n)
(15)通过特征名取数据
df.loc[feature_name]
DataFrame 操作
(16)对 DataFrame 使用函数
该函数将令 DataFrame 中「height」行的所有值乘上 2:
df["height"].apply(*lambda* height: 2 * height)
或:
def multiply(x):
return x * 2
df["height"].apply(multiply)
(17)重命名行
下面代码会重命名 DataFrame 的第三行为「size」:
df.rename(columns = {df.columns[2]:'size'}, inplace=True)
(18)取某一行的唯一实体
下面代码将取「name」行的唯一实体:
df["name"].unique()
(19)访问子 DataFrame
以下代码将从 DataFrame 中抽取选定了的行「name」和「size」:
new_df = df[["name", "size"]]
(20)总结数据信息
# Sum of values in a data frame
df.sum()
# Lowest value of a data frame
df.min()
# Highest value
df.max()
# Index of the lowest value
df.idxmin()
# Index of the highest value
df.idxmax()
# Statistical summary of the data frame, with quartiles, median, etc.
df.describe()
# Average values
df.mean()
# Median values
df.median()
# Correlation between columns
df.corr()
# To get these values for only one column, just select it like this#
df["size"].median()
(21)给数据排序
df.sort_values(ascending = False)
(22)布尔型索引
以下代码将过滤名为「size」的行,并仅显示值等于 5 的行:
df[df["size"] == 5]
(23)选定特定的值
以下代码将选定「size」列、第一行的值:
df.loc([0], ['size'])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20