作者 Ben Stanbury
编译 Mika
本文为 CDA 数据分析师原创作品,转载需授权
有人问我,应该如何从数据分析师进阶为数据科学家呢?很简单,分三步:
1. 打开LinkedIn,登录。
2. 点击“编辑我的个人资料”。
3. 找到“数据分析师”,并用“数据科学家”替代。
完成!非常容易吧。
不幸的是,现实并不那么简单。
掌握必备的技能,从或多或少的数据中得出分析见解,这些都并非易事。
关于如何进入数据科学领域的文章有很多,但是关于从数据分析师转化为数据科学家的文章却很少。
在此之前,我们有必要分别给出这两个职业的定义。
数据分析师
对结构化数据进行收集、处理并应用统计算法,从而产生效益和改进决策。
数据科学家
有类似的目标,但需要更强的能力,从而能处理大量的非结构化数据,很多情况下需要实时处理。
数据科学家需要发现重要信息,能够对不同来源的数据进行数据清理、处理并运行高级算法。同时,需要很强的沟通描述能力,以及可视化技能。
我经常会遇到许多优秀的数据分析师,他们非常想进阶为数据科学家,但苦于没有机会,或不知道该如何开始。这也是促使我写本文的原因之一。
为什么要成为数据科学家?
原因有很多,主要分为以下几点:
* 影响力
可能带来巨大的商业利益。更有机会得到领导层青睐,能够更好地提升发展方向。
* 精通
在快速发展的数据科学领域中,有许多问题需要被解决。例如,构建图像识别器或文本分类器识别社交媒体上的发布的违规言论。
* 相关性
有人预测人工智能最终将取代人类的工作。为了保证自己工作,应该不断创新,而不是等待被自动化取代。
* 加薪与发展机会
薪水和发展机会会得到提升,优秀的数据科学家很少,需求量很大。
数据科学——需要学习很多技能
机器人取代人类工作
如何成为数据科学家?
大多数数据分析师都有很好的基础,但是应用先进的方法处理大型数据集需要多年的学习和经验积累。
那么,数据科学家需要哪些技能?
这个问题可能没有正确的答案,复杂的数据科学项目涉及到许多专业技能。在投入数据科学领域的最初几年,最好掌握以下技能:
数据科学语言:Python / R
关系数据库:MySQL、Postgress
非关系数据库:MongoDB
机器学习模型:回归、提升树支持向量机(Boosted Trees SVM), 神经网络
绘图:Neo4J、GraphX
云:GCP / AWS / Azure
API 交互 :OAuth、Rest
专业领域:自然语言处理、OCR和计算机视觉
提升树模型在数据科学竞赛中很受欢迎
RShiny仪表板是不错的探索数据交互方式。
掌握这些技能需要大量的时间(可能比获得专业学位更久)。但每个人都不能满足现状,必须不断学习。如果我们每天能进步一点,那么在未来某天就能达到自己的预期目标。
决心和坚韧有时比聪明才智能有用。
行动计划
首先我们需要一些基本技能:
1. 从正确的理念开始
十年前,等待数据课程的资料可能需要数周的时间,但那些日子已经一去不回。如今到处都有很棒的学习资源,我们需要不断学习,不断提升技能。
2. 学习一门语言并培养数学技能
可以选择学习Python或R语言。Coursera和Udemy等网站上有大量免费课程。吴恩达的机器学习课程和斯坦福大学的神经网络课程都非常棒,而且很有趣。
许多Python用户喜欢使用Anaconda和Jupyter Notebook。许多R用户喜欢用R Studio。
3. 解决实际问题
尝试解决工作中的实际问题,与商业专家和数据工程师一起工作。
4. 参加Kaggle比赛
Kaggle任务有一定范围,而且数据比较干净,但能很好的提高建立模型技能,同时能与几千人一起解决挑战性的数据问题。不要担心排名,从零开始。
5. 了解行业大神的动向
可以关注Geoffrey Hinton、吴恩达、Yann LeCun、Rachel Thomas、Jeremy Howard等人。
6. 使用高效的工作方式
积累一定基础后,使用GitHub等版本控制系统改进自己的工作流程,以便进行部署和代码维护,还可以使用Docker。
7. 有效地沟通
我们需要展现自己的工作成果,在跟领导层汇报工作时,需要有效地利用演示文稿等中。
良好的工作环境
即使你掌握了许多技能,但所在的公司没有合适的工具和环境,那么开展工作也是很困难的。工作环境中总会存在些不可控的因素,因此我们要考虑哪些因素可以改善和利用。
1. 转到合适的团队
大多数大中型企业至少有一个小型数据科学团队,因此要选择合适的企业。
2. 与合适的人合作
如果换工作不太现实,那么设法与出色的数据科学家合作。例如,发现相关问题,与专业人员合作解决,而不是委托他们解决。
3. 适当的工具和环境
企业有时不太明确该如何数据科学工具进行投入。有些企业制定计划和投入过程比较繁琐,因此只会优先考虑收益明显的商业案例。抓住机会,倡导对分析环境、工具、相关培训的投入。
4. 制定明确的用例
了解公司的业务以及能如何应用数据科学,将这两者联系起来,制定明确的用例。
5. 与更优秀的人合作
努力成为优秀团队中的一员,你不仅会收获地更多,还能学到很多自己为掌握的知识。
结语
现在就是开始的最佳机会,立即开始学习,尽快解决实际问题。在学习的过程中,你会不断提升自己,最终让自己大吃一惊,要珍惜每个机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31