京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社会网络分析(SNA) 是一套规范的对社会关系与结构进行分析的方法,社会网络分析的对象是不同的社会行动者内在联系而构成的网络结构。
社会网络分析思想最早起源于20世纪30年代西方的心理学和人类学研究。
社会网络分析主要沿着下面三个大的方向进行发展:
(1) 社会计量学派运用图论方法对社会网络分析做出了杰出的贡献。
(2) 20世纪30年代的哈佛学派致力于研究人际模式和"团伙"形式。
(3) 20世纪50年代,曼彻斯特学派进行了大量的社会网络研究,他们把社会网络分析技术运用到了人际关系上。
20世纪70年代以后,新哈佛学派在社会网络分析方面做出了巨大的贡献,他们逐步的完善了社会网络分析这种独特的研究方法。
自20世纪90年代以来,随着计算机技术的不断发展和网络分析理论研究的深入,社会网络分析的模型得到了进一步的改进,社会网络分析跨越了传统的学科界限从而越来越多的运用到了各个领域。社会网络分析逐渐成为了一种跨学科的研究方法。
社会网络分析的意义:
通过对网络中各种关系进行客观的定量分析为实证研究提供量化的检验工具。
社会网络分析是定性和定量的桥梁,它对大量的图表数据进行定量分析得出定性的结论。
社会科学研究的对象应是社会结构,而不是个体。通过研究网络关系,有助于把个体间关系、“微观”网络与大规模的社会系统的“宏观”结构结合起来。故英国学者J•斯科特指出:“社会网络分析已经为一种关于社会结构的新理论的出现奠定了基础。”
从零基础掌握社会网络分析,使用Python作为载体, 结合理论知识实际操作,
使学员不仅理解社会网络分析的计算思维方法, 同时掌握实际计算技能:
社会网络分析思想与应用现场班
培训时间:2019年9月13-14日 (周末两天)
培训地点:北京市海淀区丹龙大厦
培训费用:2000元 /1700元(学生价, 仅限全日制本科及硕士在读)
授课安排:上午9:00-12:00,下午1:30-4:30,答疑4:30-5:00
讲师介绍:
张忠元, 理学博士, 中央财经大学教授, 博士生导师, 中国计算机学会高级会员, 果壳网科学顾问。
主要研究兴趣在复杂网络分析和数据挖掘. 在Data Mining and Knowledge Discovery,Physical Review E, EPL, Knowledge and Information Systems, Scientific Reports, 中国科学等国内外著名期刊上发表学术论文十余篇。
爱思唯尔杰出审稿人, 担任Data Mining and Knowledge Discovery,Physica A, Management Science等著名期刊的匿名审稿人。
课程目的:
1. 希望大家经过两天的学习, 能对基本的社会网络分析理论和实际应用有所掌握, 同时掌握Python分析网络数据的基本技能;
2. 希望学员能够理解大量顶级期刊上相关领域的研究, 以期为后续学习和研究打下宽厚坚实的基础。
课程大纲:
第1讲(3小时)
1. 欧拉七桥问题(0.5小时)
2. 图论的发展历史(0.25小时)
3. 社会网络分析的发展历史(0.25小时)
4. 图论的现状和主要关注的问题(2小时)
第2讲(2.5小时)
1. Python编程的基础知识(0.5小时)
2. 图论相关编程实践(0.5小时)
3. 社会网络分析的现状和主要关注的问题(0.25小时)
4. 社会网络的小世界性质(0.5小时)
5. ER、WS、BA网络生成模型(0.5小时)
6. 其它生成模型, 产生具有特定拓扑结构性质的网络 (0.25小时)
7. 使用Python进行实操生成网络
第3讲(3.5小时)
1. 社会网络拓扑结构的稳健性和易感性(0.5小时)
2. 社会网络的同配性概念和计算(0.25小时)
3. 弱连边的强度(0.25小时)
4. 社会网络点的中心性(0.5小时)
5. 社会网络的社团结构探测: 方法和评价(0.5小时)
6. 链路预测(0.5小时)
7. 符号网络、多层网络和含时网络分析(0.5小时)
以上均使用python实际操作
第4讲(3小时)
1. 社会网络上的博弈论(0.5小时)
2. SI、SIS、SIR模型 (0.5小时)
3. 线性阈值模型、级联模型(0.25小时)
4. 以上模型的性质, 关系和区别 (0.25小时)
5. 以上模型的python实操 (0.25小时)
6. 案例、文献阅读、机动、互动和答疑时间(1小时)
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
报名流程:
1,点击“https://www.cda.cn/kecheng/67.html”,填写报名信息提交;
2,通过订单支付(需要刷卡或者对公转账请与我们联系);
3,开课前一周发送资料及交通住宿指南;
4,现场领取发票及开课通知。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29